Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Belinda Phipson is active.

Publication


Featured researches published by Belinda Phipson.


Diabetes | 2010

Pro-Inflammatory CD11c+CD206+ Adipose Tissue Macrophages Are Associated With Insulin Resistance in Human Obesity

John M. Wentworth; Gaetano Naselli; Wendy A. Brown; Lisa Doyle; Belinda Phipson; Gordon K. Smyth; Martin Wabitsch; Paul E. O'Brien; Leonard C. Harrison

OBJECTIVE Insulin resistance and other features of the metabolic syndrome have been causally linked to adipose tissue macrophages (ATMs) in mice with diet-induced obesity. We aimed to characterize macrophage phenotype and function in human subcutaneous and omental adipose tissue in relation to insulin resistance in obesity. RESEARCH DESIGN AND METHODS Adipose tissue was obtained from lean and obese women undergoing bariatric surgery. Metabolic markers were measured in fasting serum and ATMs characterized by immunohistology, flow cytometry, and tissue culture studies. RESULTS ATMs comprised CD11c+CD206+ cells in “crown” aggregates and solitary CD11c−CD206+ cells at adipocyte junctions. In obese women, CD11c+ ATM density was greater in subcutaneous than omental adipose tissue and correlated with markers of insulin resistance. CD11c+ ATMs were distinguished by high expression of integrins and antigen presentation molecules; interleukin (IL)-1β, -6, -8, and -10; tumor necrosis factor-α; and CC chemokine ligand-3, indicative of an activated, proinflammatory state. In addition, CD11c+ ATMs were enriched for mitochondria and for RNA transcripts encoding mitochondrial, proteasomal, and lysosomal proteins, fatty acid metabolism enzymes, and T-cell chemoattractants, whereas CD11c− ATMs were enriched for transcripts involved in tissue maintenance and repair. Tissue culture medium conditioned by CD11c+ ATMs, but not CD11c− ATMs or other stromovascular cells, impaired insulin-stimulated glucose uptake by human adipocytes. CONCLUSIONS These findings identify proinflammatory CD11c+ ATMs as markers of insulin resistance in human obesity. In addition, the machinery of CD11c+ ATMs indicates they metabolize lipid and may initiate adaptive immune responses.


Statistical Applications in Genetics and Molecular Biology | 2010

Permutation P-values Should Never Be Zero: Calculating Exact P-values When Permutations Are Randomly Drawn

Belinda Phipson; Gordon K. Smyth

Permutation tests are amongst the most commonly used statistical tools in modern genomic research, a process by which p-values are attached to a test statistic by randomly permuting the sample or gene labels. Yet permutation p-values published in the genomic literature are often computed incorrectly, understated by about 1/m, where m is the number of permutations. The same is often true in the more general situation when Monte Carlo simulation is used to assign p-values. Although the p-value understatement is usually small in absolute terms, the implications can be serious in a multiple testing context. The understatement arises from the intuitive but mistaken idea of using permutation to estimate the tail probability of the test statistic. We argue instead that permutation should be viewed as generating an exact discrete null distribution. The relevant literature, some of which is likely to have been relatively inaccessible to the genomic community, is reviewed and summarized. A computation strategy is developed for exact p-values when permutations are randomly drawn. The strategy is valid for any number of permutations and samples. Some simple recommendations are made for the implementation of permutation tests in practice.


Blood | 2011

Aire regulates the transfer of antigen from mTECs to dendritic cells for induction of thymic tolerance

François-Xavier Hubert; Sarah Kinkel; Gayle M. Davey; Belinda Phipson; Scott N. Mueller; Adrian Liston; Anna I Proietto; Ping Cannon; Simon P. Forehan; Gordon K. Smyth; Li Wu; Christopher C. Goodnow; Francis R. Carbone; Hamish S. Scott; William R. Heath

To investigate the role of Aire in thymic selection, we examined the cellular requirements for generation of ovalbumin (OVA)-specific CD4 and CD8 T cells in mice expressing OVA under the control of the rat insulin promoter. Aire deficiency reduced the number of mature single-positive OVA-specific CD4(+) or CD8(+) T cells in the thymus, independent of OVA expression. Importantly, it also contributed in 2 ways to OVA-dependent negative selection depending on the T-cell type. Aire-dependent negative selection of OVA-specific CD8 T cells correlated with Aire-regulated expression of OVA. By contrast, for OVA-specific CD4 T cells, Aire affected tolerance induction by a mechanism that operated independent of the level of OVA expression, controlling access of antigen presenting cells to medullary thymic epithelial cell (mTEC)-expressed OVA. This study supports the view that one mechanism by which Aire controls thymic negative selection is by regulating the indirect presentation of mTEC-derived antigens by thymic dendritic cells. It also indicates that mTECs can mediate tolerance by direct presentation of Aire-regulated antigens to both CD4 and CD8 T cells.


Journal of Immunology | 2011

Targeting Antigen to Mouse Dendritic Cells via Clec9A Induces Potent CD4 T Cell Responses Biased toward a Follicular Helper Phenotype

Mireille H. Lahoud; Fatma Ahmet; Susie Kitsoulis; Soo San Wan; David Vremec; Chin-Nien Lee; Belinda Phipson; Wei Shi; Gordon K. Smyth; Andrew M. Lew; Yu Kato; Scott N. Mueller; Gayle M. Davey; William R. Heath; Ken Shortman; Irina Caminschi

Three surface molecules of mouse CD8+ dendritic cells (DCs), also found on the equivalent human DC subpopulation, were compared as targets for Ab-mediated delivery of Ags, a developing strategy for vaccination. For the production of cytotoxic T cells, DEC-205 and Clec9A, but not Clec12A, were effective targets, although only in the presence of adjuvants. For Ab production, however, Clec9A excelled as a target, even in the absence of adjuvant. Potent humoral immunity was a result of the highly specific expression of Clec9A on DCs, which allowed longer residence of targeting Abs in the bloodstream, prolonged DC Ag presentation, and extended CD4 T cell proliferation, all of which drove highly efficient development of follicular helper T cells. Because Clec9A shows a similar expression pattern on human DCs, it has particular promise as a target for vaccines of human application.


Blood | 2012

Bcl-2, Bcl-x(L), and Bcl-w are not equivalent targets of ABT-737 and navitoclax (ABT-263) in lymphoid and leukemic cells.

Delphine Mérino; Seong Lin Khaw; Stephan P. Glaser; Daniel J. Anderson; Lisa D. Belmont; Chihunt Wong; Peng Yue; Mikara Robati; Belinda Phipson; W D Fairlie; Erinna F. Lee; Kirsteen J. Campbell; Cassandra J. Vandenberg; Suzanne Cory; Andrew W. Roberts; Mary J. C. Ludlam; David C. S. Huang

The BH3-mimetic ABT-737 and an orally bioavailable compound of the same class, navitoclax (ABT-263), have shown promising antitumor efficacy in preclinical and early clinical studies. Although both drugs avidly bind Bcl-2, Bcl-x(L), and Bcl-w in vitro, we find that Bcl-2 is the critical target in vivo, suggesting that patients with tumors overexpressing Bcl-2 will probably benefit. In human non-Hodgkin lymphomas, high expression of Bcl-2 but not Bcl-x(L) predicted sensitivity to ABT-263. Moreover, we show that increasing Bcl-2 sensitized normal and transformed lymphoid cells to ABT-737 by elevating proapoptotic Bim. In striking contrast, increasing Bcl-x(L) or Bcl-w conferred robust resistance to ABT-737, despite also increasing Bim. Cell-based protein redistribution assays unexpectedly revealed that ABT-737 disrupts Bcl-2/Bim complexes more readily than Bcl-x(L)/Bim or Bcl-w/Bim complexes. These results have profound implications for how BH3-mimetics induce apoptosis and how the use of these compounds can be optimized for treating lymphoid malignancies.


Blood | 2010

Opposing roles of polycomb repressive complexes in hematopoietic stem and progenitor cells.

Ian Majewski; Matthew E. Ritchie; Belinda Phipson; Jason Corbin; Miha Pakusch; Anja Ebert; Meinrad Busslinger; Haruhiko Koseki; Yifang Hu; Gordon K. Smyth; Warren S. Alexander; Douglas J. Hilton; Marnie E. Blewitt

Polycomb group (PcG) proteins are transcriptional repressors with a central role in the establishment and maintenance of gene expression patterns during development. We have investigated the role of polycomb repressive complexes (PRCs) in hematopoietic stem cells (HSCs) and progenitor populations. We show that mice with loss of function mutations in PRC2 components display enhanced HSC/progenitor population activity, whereas mutations that disrupt PRC1 or pleiohomeotic repressive complex are associated with HSC/progenitor cell defects. Because the hierarchical model of PRC action would predict synergistic effects of PRC1 and PRC2 mutation, these opposing effects suggest this model does not hold true in HSC/progenitor cells. To investigate the molecular targets of each complex in HSC/progenitor cells, we measured genome-wide expression changes associated with PRC deficiency, and identified transcriptional networks that are differentially regulated by PRC1 and PRC2. These studies provide new insights into the mechanistic interplay between distinct PRCs and have important implications for approaching PcG proteins as therapeutic targets.


The Annals of Applied Statistics | 2016

Robust hyperparameter estimation protects against hypervariable genes and improves power to detect differential expression

Belinda Phipson; Stanley Chun-Wei Lee; Ian Majewski; Warren S. Alexander; Gordon K. Smyth

One of the most common analysis tasks in genomic research is to identify genes that are differentially expressed (DE) between experimental conditions. Empirical Bayes (EB) statistical tests using moderated genewise variances have been very effective for this purpose, especially when the number of biological replicate samples is small. The EB procedures can however be heavily influenced by a small number of genes with very large or very small variances. This article improves the differential expression tests by robustifying the hyperparameter estimation procedure. The robust procedure has the effect of decreasing the informativeness of the prior distribution for outlier genes while increasing its informativeness for other genes. This effect has the double benefit of reducing the chance that hypervariable genes will be spuriously identified as DE while increasing statistical power for the main body of genes. The robust EB algorithm is fast and numerically stable. The procedure allows exact small-sample null distributions for the test statistics and reduces exactly to the original EB procedure when no outlier genes are present. Simulations show that the robustified tests have similar performance to the original tests in the absence of outlier genes but have greater power and robustness when outliers are present. The article includes case studies for which the robust method correctly identifies and downweights genes associated with hidden covariates and detects more genes likely to be scientifically relevant to the experimental conditions. The new procedure is implemented in the limma software package freely available from the Bioconductor repository.


Blood | 2010

Maximal killing of lymphoma cells by DNA damage-inducing therapy requires not only the p53 targets Puma and Noxa, but also Bim

Lina Happo; Mark S. Cragg; Belinda Phipson; Jon M. Haga; Elisa S. Jansen; Marco J. Herold; Grant Dewson; Ewa M. Michalak; Cassandra J. Vandenberg; Gordon K. Smyth; Andreas Strasser; Suzanne Cory; Clare L. Scott

DNA-damaging chemotherapy is the backbone of cancer treatment, although it is not clear how such treatments kill tumor cells. In nontransformed lymphoid cells, the combined loss of 2 proapoptotic p53 target genes, Puma and Noxa, induces as much resistance to DNA damage as loss of p53 itself. In Eμ-Myc lymphomas, however, lack of both Puma and Noxa resulted in no greater drug resistance than lack of Puma alone. A third B-cell lymphoma-2 homology domain (BH)3-only gene, Bim, although not a direct p53 target, was up-regulated in Eμ-Myc lymphomas incurring DNA damage, and knockdown of Bim levels markedly increased the drug resistance of Eμ-Myc/Puma(-/-)Noxa(-/-) lymphomas both in vitro and in vivo. Remarkably, c-MYC-driven lymphoma cell lines from Noxa(-/-)Puma(-/-)Bim(-/-) mice were as resistant as those lacking p53. Thus, the combinatorial action of Puma, Noxa, and Bim is critical for optimal apoptotic responses of lymphoma cells to 2 commonly used DNA-damaging chemotherapeutic agents, identifying Bim as an additional biomarker for treatment outcome in the clinic.


Journal of Biological Chemistry | 2012

Proteomic and metabolomic analyses of mitochondrial complex I-deficient mouse model generated by spontaneous B2 short interspersed nuclear element (SINE) insertion into NADH dehydrogenase (ubiquinone) Fe-S protein 4 (Ndufs4) gene.

Dillon W. Leong; Jasper C. Komen; Chelsee A. Hewitt; Estelle Arnaud; Matthew McKenzie; Belinda Phipson; Melanie Bahlo; Adrienne Laskowski; Sarah Kinkel; Gayle M. Davey; William R. Heath; Anne K. Voss; René P. Zahedi; James Pitt; Roman Chrast; Albert Sickmann; Michael T. Ryan; Gordon K. Smyth; David R. Thorburn; Hamish S. Scott

Background: Mitochondrial complex I deficiency is a common inherited metabolic disease. Results: B2 transposable element insertion into Ndufs4 in mice causes loss of the “N assembly module” of complex I, alterations in cellular metabolites, and neurological symptoms. Conclusion: NDUFS4 subunit is required for complex I stability. Significance: Understanding the effects of oxidative phosphorylation defects is essential for the development of treatments. Eukaryotic cells generate energy in the form of ATP, through a network of mitochondrial complexes and electron carriers known as the oxidative phosphorylation system. In mammals, mitochondrial complex I (CI) is the largest component of this system, comprising 45 different subunits encoded by mitochondrial and nuclear DNA. Humans diagnosed with mutations in the gene NDUFS4, encoding a nuclear DNA-encoded subunit of CI (NADH dehydrogenase ubiquinone Fe-S protein 4), typically suffer from Leigh syndrome, a neurodegenerative disease with onset in infancy or early childhood. Mitochondria from NDUFS4 patients usually lack detectable NDUFS4 protein and show a CI stability/assembly defect. Here, we describe a recessive mouse phenotype caused by the insertion of a transposable element into Ndufs4, identified by a novel combined linkage and expression analysis. Designated Ndufs4fky, the mutation leads to aberrant transcript splicing and absence of NDUFS4 protein in all tissues tested of homozygous mice. Physical and behavioral symptoms displayed by Ndufs4fky/fky mice include temporary fur loss, growth retardation, unsteady gait, and abnormal body posture when suspended by the tail. Analysis of CI in Ndufs4fky/fky mice using blue native PAGE revealed the presence of a faster migrating crippled complex. This crippled CI was shown to lack subunits of the “N assembly module”, which contains the NADH binding site, but contained two assembly factors not present in intact CI. Metabolomic analysis of the blood by tandem mass spectrometry showed increased hydroxyacylcarnitine species, implying that the CI defect leads to an imbalanced NADH/NAD+ ratio that inhibits mitochondrial fatty acid β-oxidation.


Blood | 2013

Polycomb repressive complex 2 (PRC2) suppresses Eμ-myc lymphoma.

Stanley Chun-Wei Lee; Belinda Phipson; Craig D. Hyland; Huei San Leong; Rhys S. Allan; Aaron T. L. Lun; Douglas J. Hilton; Stephen L. Nutt; Marnie E. Blewitt; Gordon K. Smyth; Warren S. Alexander; Ian Majewski

Deregulation of polycomb group complexes polycomb repressive complex 1 (PRC1) and 2 (PRC2) is associated with human cancers. Although inactivating mutations in PRC2-encoding genes EZH2, EED, and SUZ12 are present in T-cell acute lymphoblastic leukemia and in myeloid malignancies, gain-of-function mutations in EZH2 are frequently observed in B-cell lymphoma, implying disease-dependent effects of individual mutations. We show that, in contrast to PRC1, PRC2 is a tumor suppressor in Eµ-myc lymphomagenesis, because disease onset was accelerated by heterozygosity for Suz12 or by short hairpin RNA-mediated knockdown of Suz12 or Ezh2. Accelerated lymphomagenesis was associated with increased accumulation of B-lymphoid cells in the absence of effects on apoptosis or cell cycling. However, Suz12-deficient B-lymphoid progenitors exhibit enhanced serial clonogenicity. Thus, PRC2 normally restricts the self-renewal of B-lymphoid progenitors, the disruption of which contributes to lymphomagenesis. This finding provides new insight regarding the functional contribution of mutations in PRC2 in a range of leukemias.

Collaboration


Dive into the Belinda Phipson's collaboration.

Top Co-Authors

Avatar

Gordon K. Smyth

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Warren S. Alexander

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Ian Majewski

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Luke Zappia

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stanley Chun-Wei Lee

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Andreas Strasser

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Anne K. Voss

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge