Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bellinda Benhamú is active.

Publication


Featured researches published by Bellinda Benhamú.


Current Medicinal Chemistry | 2002

Arylpiperazine Derivatives Acting at 5-HT1A Receptors

María L. López-Rodríguez; David Ayala; Bellinda Benhamú; M. J. Morcillo; Alma Viso

Serotonin (5-hydroxytryptamine, 5-HT) is one of the most attractive targets for medicinal chemists. Among 5-HTRs, the 5-HT(1A) subtype is the best studied and it is generally accepted that it is involved in psychiatric disorders such as anxiety and depression. Several structurally different compounds are known to bind 5-HT(1A)R sites. Among these, arylpiperazine derivatives represent one of the most important classes of 5-HT(1A)R ligands. This article will review the development of arylpiperazine derivatives acting at 5-HT(1A)Rs with an emphasis on structure-affinity relationships of agonists and antagonists, ligand-receptor interactions and pharmacological applications.


Journal of Medicinal Chemistry | 2014

Serotonin 5-HT6 Receptor Antagonists for the Treatment of Cognitive Deficiency in Alzheimer’s Disease

Bellinda Benhamú; Mar Martín-Fontecha; Henar Vázquez-Villa; Leonardo Pardo; María L. López-Rodríguez

Alzheimers disease (AD) is one of the most frequent causes of death and disability worldwide and has a significant clinical and socioeconomic impact. In the search for novel therapeutic strategies, serotonin 5-HT6 receptor (5-HT6R) has been proposed as a promising drug target for cognition enhancement in AD. This manuscript reviews the compelling evidence for the implication of this receptor in learning and memory processes. We have summarized the current status of the medicinal chemistry of 5-HT6R antagonists and the encouraging preclinical findings that demonstrate their significant procognitive behavioral effects in a number of learning paradigms, probably acting through modulation of multiple neurotransmitter systems and signaling pathways. The results of the ongoing clinical trials are eagerly awaited to shed some light on the validation of 5-HT6R antagonists as a new drug class for the treatment of symptomatic cognitive impairment in AD, either as stand-alone therapy or in combination with established agents.


Clinical Cancer Research | 2009

Novel Inhibitors of Fatty Acid Synthase with Anticancer Activity

Teresa Puig; Carlos Turrado; Bellinda Benhamú; Helena Aguilar; Joana Relat; Silvia Ortega-Gutiérrez; Gemma Casals; Pedro F. Marrero; Ander Urruticoechea; Diego Haro; María L. López-Rodríguez; Ramon Colomer

Purpose: Fatty acid synthase (FASN) is overexpressed in human breast carcinoma. The natural polyphenol (−)-epigallocatechin-3-gallate blocks in vitro FASN activity and leads to apoptosis in breast cancer cells without any effects on carnitine palmitoyltransferase-1 (CPT-1) activity, and in vivo, does not decrease body weight. We synthesized a panel of new polyphenolic compounds and tested their effects on breast cancer models. Experimental Design: We evaluated the in vitro effects of the compounds on breast cancer cell growth (SK-Br3, MCF-7, and MDA-MB-231), apoptosis [as assessed by cleavage of poly(ADP-ribose) polymerase], cell signaling (HER2, ERK1/2, and AKT), and fatty acid metabolism enzymes (FASN and CPT-1). In vivo, we have evaluated their antitumor activity and their effect on body weight in a mice model of BT474 breast cancer cells. Results: Two compounds potently inhibited FASN activity and showed high cytotoxicity. Moreover, the compounds induced apoptosis and caused a marked decrease in the active forms of HER2, AKT, and ERK1/2 proteins. Interestingly, the compounds did not stimulate CPT-1 activity in vitro. We show evidence that one of the FASN inhibitors blocked the growth of BT474 breast cancer xenografts and did not induce weight loss in vivo. Conclusions: The synthesized polyphenolic compounds represent a novel class of FASN inhibitors, with in vitro and in vivo anticancer activity, that do not exhibit cross-activation of β-oxidation and do not induce weight loss in animals. One of the compounds blocked the growth of breast cancer xenografts. These FASN inhibitors may represent new agents for breast cancer treatment. (Clin Cancer Res 2009;15(24):7608–15)


Breast Cancer Research | 2011

A novel inhibitor of fatty acid synthase shows activity against HER2+ breast cancer xenografts and is active in anti-HER2 drug-resistant cell lines.

Teresa Puig; Helena Aguilar; Sílvia Cufí; Glòria Oliveras; Carlos Turrado; Silvia Ortega-Gutiérrez; Bellinda Benhamú; María L. López-Rodríguez; Ander Urruticoechea; Ramon Colomer

IntroductionInhibiting the enzyme Fatty Acid Synthase (FASN) leads to apoptosis of breast carcinoma cells, and this is linked to human epidermal growth factor receptor 2 (HER2) signaling pathways in models of simultaneous expression of FASN and HER2.MethodsIn a xenograft model of breast carcinoma cells that are FASN+ and HER2+, we have characterised the anticancer activity and the toxicity profile of G28UCM, the lead compound of a novel family of synthetic FASN inhibitors. In vitro, we analysed the cellular and molecular interactions of combining G28UCM with anti-HER drugs. Finally, we tested the cytotoxic ability of G28UCM on breast cancer cells resistant to trastuzumab or lapatinib, that we developed in our laboratory.ResultsIn vivo, G28UCM reduced the size of 5 out of 14 established xenografts. In the responding tumours, we observed inhibition of FASN activity, cleavage of poly-ADPribose polymerase (PARP) and a decrease of p-HER2, p- protein kinase B (AKT) and p-ERK1/2, which were not observed in the nonresponding tumours. In the G28UCM-treated animals, no significant toxicities occurred, and weight loss was not observed. In vitro, G28UCM showed marked synergistic interactions with trastuzumab, lapatinib, erlotinib or gefitinib (but not with cetuximab), which correlated with increases in apoptosis and with decreases in the activation of HER2, extracellular signal-regulated kinase (ERK)1/2 and AKT. In trastuzumab-resistant and in lapatinib-resistant breast cancer cells, in which trastuzumab and lapatinib were not effective, G28UCM retained the anticancer activity observed in the parental cells.ConclusionsG28UCM inhibits fatty acid synthase (FASN) activity and the growth of breast carcinoma xenografts in vivo, and is active in cells with acquired resistance to anti-HER2 drugs, which make it a candidate for further pre-clinical development.


Journal of Medicinal Chemistry | 2010

Benzimidazole Derivatives as New Serotonin 5-HT6 Receptor Antagonists. Molecular Mechanisms of Receptor Inactivation

Tania de la Fuente; Mar Martín-Fontecha; Jessica Sallander; Bellinda Benhamú; Mercedes Campillo; Rocío A. Medina; Lucie P. Pellissier; Sylvie Claeysen; Aline Dumuis; Leonardo Pardo; María L. López-Rodríguez

On the basis of our previously described pharmacophore model for serotonin 5-HT(6) receptor (5-HT(6)R) antagonists, we have designed, synthesized, and pharmacologically characterized a series of benzimidazole derivatives 1-20 that represent a new family of potent antagonists at the human 5-HT(6)R. Site-directed mutagenesis and a beta(2)-adrenoceptor-based homology model of the 5-HT(6)R were used to predict the mode of binding of antagonist SB-258585 and the new synthesized ligands. Substitution of W6.48, F6.52, or N6.55 by Ala fully impedes compound 4 to block 5-HT-induced activation. Thus, we propose that D3.32 in TM 3 anchors the protonated piperazine ring, the benzimidazole ring expands parallel to EL 2 to hydrogen bond N6.55 in TM 6, and the aromatic ring is placed between TMs 3 and 5 in CH(2)-containing compounds and between TMs 3 and 6 in CO-containing compounds. This combined experimental and computational study has permitted to propose the molecular mechanisms by which the new benzimidazole derivatives act as 5-HT(6)R antagonists.


Bioorganic & Medicinal Chemistry | 1999

Benzimidazole derivatives. Part 1: Synthesis and structure–activity relationships of new benzimidazole-4-carboxamides and carboxylates as potent and selective 5-HT4 receptor antagonists

María L. López-Rodríguez; Bellinda Benhamú; Alma Viso; M. José Morcillo; Marta Murcia; Luis M. Orensanz; M.José Alfaro; M. Isabel Martín

New benzimidazole-4-carboxamides 1-16 and -carboxylates 17-26 were synthesized and evaluated for binding affinity at serotonergic 5-HT4 and 5-HT3 receptors in the CNS. Most of the synthesized compounds exhibited moderate-to-very high affinity (in many cases subnanomolar) for the 5-HT4 binding site and no significant affinity for the 5-HT3 receptor. SAR observations and structural analyses (molecular modeling, INSIGHT II) indicated that the presence of a voluminous substituent in the basic nitrogen atom of the amino moiety and a distance of ca. 8.0 A from this nitrogen to the aromatic ring are of great importance for high affinity and selectivity for 5-HT4 receptors. These results confirm our recently proposed model for recognition by the 5-HT4 binding site. Amides 12-15 and esters 24 and 25 bound at central 5-HT4 sites with very high affinity (Ki = 0.11-2.9 nM) and excellent selectivity over serotonin 5-HT3, 5-HT2A, and 5-HT1A receptors (Ki > 1000-10,000 nM). Analogues 12 (Ki(5-HT4) = 0.32 nM), 13 (Ki(5-HT4) = 0.11 nM), 14 (Ki(5-HT4) = 0.29 nM) and 15 (Ki(5-HT4) = 0.54 nM) were pharmacologically characterized as selective 5-HT4 antagonists in the isolated guinea pig ileum (pA2 = 7.6, 7.9, 8.2 and 7.9, respectively), with a potency comparable to the 5-HT4 receptor antagonist RS 39604 (pA2 = 8.2). The benzimidazole-4-carboxylic acid derivatives described in this paper represent a novel class of potent and selective 5-HT4 receptor antagonists. In particular, compounds 12-15 could be interesting pharmacological tools for the understanding of the role of 5-HT4 receptors.


Journal of Medicinal Chemistry | 2012

New Synthetic Inhibitors of Fatty Acid Synthase with Anticancer Activity

Carlos Turrado; Teresa Puig; Javier García-Cárceles; Marta Artola; Bellinda Benhamú; Silvia Ortega-Gutiérrez; Joana Relat; Glòria Oliveras; Adriana Blancafort; Diego Haro; Pedro F. Marrero; Ramon Colomer; María L. López-Rodríguez

Fatty acid synthase (FASN) is a lipogenic enzyme that is highly expressed in different human cancers. Here we report the development of a new series of polyphenolic compounds 5-30 that have been evaluated for their cytotoxic capacity in SK-Br3 cells, a human breast cancer cell line with high FASN expression. The compounds with an IC(50) < 50 μM have been tested for their ability to inhibit FASN activity. Among them, derivative 30 blocks the 90% of FASN activity at low concentration (4 μM), is highly cytotoxic in a broad panel of tumor cells, induces apoptosis, and blocks the activation of HER2, AKT, and ERK pathways. Remarkably, 30 does not activate carnitine palmitoyltransferase-1 (CPT-1) nor induces in mice weight loss, which are the main drawbacks of other previously described FASN inhibitors. Thus, FASN inhibitor 30 may aid the validation of this enzyme as a therapeutic target for the treatment of cancer.


Journal of Medicinal Chemistry | 2009

Synthesis of new serotonin 5-HT7 receptor ligands. Determinants of 5-HT7/5-HT1A receptor selectivity.

Rocío A. Medina; Jessica Sallander; Bellinda Benhamú; Esther Porras; Mercedes Campillo; Leonardo Pardo; María L. López-Rodríguez

We report the synthesis of a new set of compounds of general structure I (1-20) with structural modifications in the pharmacophoric elements of the previously reported lead UCM-5600. The new derivatives have been evaluated for binding affinity at 5-HT(7) and 5-HT(1A) receptors. The influence of the different structural features in terms of 5-HT(7)/5-HT(1A) receptor affinity and selectivity was analyzed by computational simulations of the complexes between compounds I and beta(2)-based 3-D models of these receptors. Compound 18 (HYD(1) = 1,3-dihydro-2H-indol-2-one; spacer = -(CH(2))(4)-; HYD(2) + HYD(3) = 3,4-dihydroisoquinolin-2(1H)-yl) exhibits high 5-HT(7)R affinity (K(i) = 7 nM) and selectivity over the 5-HT(1A)R (31-fold), and has been characterized as a partial agonist of the human 5-HT(7)R.


Bioorganic & Medicinal Chemistry Letters | 2000

First pharmacophoric hypothesis for 5-HT7 antagonism

María L. López-Rodríguez; Esther Porras; Bellinda Benhamú; José A. Ramos; M. José Morcillo; José L. Lavandera

In order to make the first contribution to the elucidation of essential structural features for 5-HT7 antagonism, a set of thirty 5-HT7 antagonists were selected from the literature. A pharmacophore model was built using Molecular Modeling studies with Catalyst program. The information contained in this model was validated with new synthesized compounds.


Bioorganic & Medicinal Chemistry Letters | 2003

Design and synthesis of new benzimidazole-arylpiperazine derivatives acting as mixed 5-HT1A/5-HT3 ligands.

María L. López-Rodríguez; Bellinda Benhamú; Ma José Morcillo; Ignacio Tejada; David Ávila; Isabel Marco; Lucio Schiapparelli; Diana Frechilla; Joaquín Del Río

A series of new benzimidazole-arylpiperazine derivatives III were designed, synthesized and evaluated for binding affinity at serotoninergic 5-HT(1A) and 5-HT(3) receptors. Compound IIIc was identified as a novel mixed 5-HT(1A)/5-HT(3) ligand with high affinity for both serotonin receptors and excellent selectivity over alpha(1)-adrenergic and dopamine D(2) receptors. This compound was characterized as a partial agonist at 5-HT(1A)Rs and a 5-HT(3)R antagonist, and was effective in preventing the cognitive deficits induced by muscarinic receptor blockade in a passive avoidance learning test.

Collaboration


Dive into the Bellinda Benhamú's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leonardo Pardo

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Alma Viso

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Mercedes Campillo

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Marta Murcia

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Silvia Ortega-Gutiérrez

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Henar Vázquez-Villa

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Ramon Colomer

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

M. José Morcillo

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Mar Martín-Fontecha

Complutense University of Madrid

View shared research outputs
Researchain Logo
Decentralizing Knowledge