Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ben Brooksby is active.

Publication


Featured researches published by Ben Brooksby.


Applied Optics | 2003

Three-dimensional optical tomography: resolution in small-object imaging

Hamid Dehghani; Brian W. Pogue; Jiang Shudong; Ben Brooksby; Keith D. Paulsen

Near-infrared (NIR) optical tomography provide estimates of the internal distribution of optical absorption and transport scattering from boundary measurement of light propagation within biological tissue. Although this is a truly three-dimensional (3D) imaging problem, most research to date has concentrated on two-dimensional modeling and image reconstruction. More recently, 3D imaging algorithms are demonstrating better estimation of the light propagation within the imaging region and are providing the basis of more accurate image construction algorithms. As 3D methods emerge, it will become increasingly important to evaluate their resolution, contrast, and localization of optical property heterogeneity. We present a concise study of 3D reconstructed resolution of a small, low-contrast, absorbing and scattering anomaly as it is placed in different locations within a cylindrical phantom. The object is an 8-mm-diameter cylinder, which represents a typical small target that needs to be resolved in NIR mammographic imaging. The best resolution and contrast is observed when the object is located near the periphery of the imaging region (12-22 mm from the edge) and is also positioned within the multiple measurement planes, with the most accurate results seen for the scatter image when the anomaly is at 17 mm from the edge. Furthermore, the accuracy of quantitative imaging is increased to almost 100% of the target values when a priori information regarding the internal structure of imaging domain is utilized.


IEEE Journal of Selected Topics in Quantum Electronics | 2003

Near-infrared (NIR) tomography breast image reconstruction with a priori structural information from MRI: algorithm development for reconstructing heterogeneities

Ben Brooksby; Hamid Dehghani; Brian W. Pogue; Keith D. Paulsen

A combined magnetic resonance and near-infrared (MRI-NIR) imaging modality can potentially yield high resolution maps of optical properties from noninvasive simultaneous measurement. The main disadvantage of near-infrared (NIR) tomography lies in the low spatial resolution resulting from the highly scattering nature of tissue for these wavelengths. MRI has achieved high resolution, but suffers from low specificity. In this study, NIR image reconstruction algorithms that incorporate a priori structural information provided by MRI are investigated in an attempt to optimize recovery of a simulated optical property distribution. The effect of high levels of tissue heterogeneity are evaluated to determine the limitations of incorporating prior information into a realistic set of patient breast images. We assume absorption coefficient (/spl mu//sub a/) variations near /spl plusmn/40%, and transport scattering coefficient (/spl mu//sub s//sup //) variations near /spl plusmn/20%, in a coronal breast MRI geometry. Changes in tissue pathology due to tumor growth can be observed with NIR tompgraphy, and so the goal here is to determine how best to quantify these tumor-based contrast regions within the presence of high tissue heterogeneity. By applying knowledge of tissues layered structure in reconstruction through various constraints in the iterative algorithm, quantitative recovery of the tumor optical properties improves from 69% to 74%, and localization improves as well. However, only when the true heterogeneity of the tissue distribution was included was accurate quantification of the tumor region possible. Using a good initial guess of /spl mu//sub a/ and /spl mu//sub s//sup //, derived from the regional structure of the model, quantification of the region reaches 99% of the true value, and spatial resolution retains a similar value to the original MRI image.


Journal of Biomedical Optics | 2005

Combining near-infrared tomography and magnetic resonance imaging to study in vivo breast tissue: implementation of a Laplacian-type regularization to incorporate magnetic resonance structure

Ben Brooksby; Shudong Jiang; Hamid Dehghani; Brian W. Pogue; Keith D. Paulsen; John B. Weaver; Christine Kogel; Steven P. Poplack

An imaging system that simultaneously performs near infrared (NIR) tomography and magnetic resonance imaging (MRI) is used to study breast tissue phantoms and a healthy woman in vivo. An NIR image reconstruction that exploits the combined data set is presented that implements the MR structure as a soft-constraint in the NIR property estimation. The algorithm incorporates the MR spatially segmented regions into a regularization matrix that links locations with similar MR properties, and applies a Laplacian-type filter to minimize variation within each region. When prior knowledge of the structure of phantoms is used to guide NIR property estimation, root mean square (rms) image error decreases from 26 to 58%. For a representative in vivo case, images of hemoglobin concentration, oxygen saturation, water fraction, scattering power, and scattering amplitude are derived and the properties of adipose and fibroglandular breast tissue types, identified from MRI, are quantified. Fibroglandular tissue is observed to have more than four times as much water content as adipose tissue, almost twice as much blood volume, and slightly reduced oxygen saturation. This approach is expected to improve recovery of abnormalities within the breast, as the inclusion of structural information increases the accuracy of recovery of embedded heterogeneities, at least in phantom studies.


Technology in Cancer Research & Treatment | 2005

Near-Infrared Characterization of Breast Tumors In Vivo using Spectrally-Constrained Reconstruction

Subhadra Srinivasan; Brian W. Pogue; Ben Brooksby; Shudong Jiang; Hamid Dehghani; Christine Kogel; Wendy A. Wells; Steven P. Poplack; Keith D. Paulsen

Multi-wavelength Near-Infrared (NIR) Tomography was utilized in this study to non-invasively quantify physiological parameters of breast tumors using direct spectral reconstruction. Frequency domain NIR measurements were incorporated with a new spectrally constrained direct chromophore and scattering image reconstruction algorithm, which was validated in simulations and experimental phantoms. Images of total hemoglobin, oxygen saturation, water, and scatter parameters were obtained with higher accuracy than previously reported. Using this spectral approach, in vivo NIR images are presented and interpreted through a series of case studies (n=6 subjects) having differing abnormalities. The corresponding mammograms and ultrasound images are also evaluated. Three of six cases were malignant (infiltrating ductal carcinomas) and showed higher hemoglobin (34–86% increase), a reduction in oxygen saturation, an increase in water content as well as scatter changes relative to surrounding normal tissue. Three of six cases were benign, two of which were diagnosed with fibrocystic disease and showed a dominant contrast in water, consistent with fluid filled cysts. Scatter amplitude was the main source of contrast in the volunteer with the benign condition fibrosis, which typically contains denser collagen tissue. The changes monitored correspond to physiological changes associated with angiogenesis, hypoxia and cell proliferation anticipated in cancers. These changes represent potential diagnostic indicators, which can be assessed to characterize breast tumors.


Review of Scientific Instruments | 2004

Magnetic resonance-guided near-infrared tomography of the breast

Ben Brooksby; Shudong Jiang; Hamid Dehghani; Brian W. Pogue; Keith D. Paulsen; Christine Kogel; Marvin M. Doyley; John B. Weaver; Steven P. Poplack

The design and implementation of a multispectral, frequency-domain near infrared tomography system is outlined, which operates in a MRI magnet for utilization of MR-guided image reconstruction of tissue optical properties. Using long silica optical fiber bundles, measurements of light transmission through up to 12 cm of female breast tissue can be acquired simultaneously with MRI scans. The NIR system utilizes six optical wavelengths from 660 to 850 nm using intensity modulated diode lasers nominally working at 100 MHz. Photomultiplier tube detector gain levels are electronically controlled on a time scale of 200 ms, thereby allowing rapid switching of the source to locations around the tissue. There are no moving parts in the detection channels and for each source position, 15 PMTs operating in parallel allow sensitivity down to 0.5 pW/cm2 at the tissue surface. Images of breast tissue optical absorption and reduced scattering coefficients are obtained using a Newton-type reconstruction algorithm to solv...


Physics in Medicine and Biology | 2003

The effects of internal refractive index variation in near-infrared optical tomography: a finite element modelling approach

Hamid Dehghani; Ben Brooksby; Karthik Vishwanath; Brian W. Pogue; Keith D. Paulsen

Near-infrared (NIR) tomography is a technique used to measure light propagation through tissue and generate images of internal optical property distributions from boundary measurements. Most popular applications have concentrated on female breast imaging, neonatal and adult head imaging, as well as muscle and small animal studies. In most instances a highly scattering medium with a homogeneous refractive index is assumed throughout the imaging domain. Using these assumptions, it is possible to simplify the model to the diffusion approximation. However, biological tissue contains regions of varying optical absorption and scatter, as well as varying refractive index. In this work, we introduce an internal boundary constraint in the finite element method approach to modelling light propagation through tissue that accounts for regions of different refractive indices. We have compared the results to data from a Monte Carlo simulation and show that for a simple two-layered slab model of varying refractive index, the phase of the measured reflectance data is significantly altered by the variation in internal refractive index, whereas the amplitude data are affected only slightly.


Journal of Biomedical Optics | 2006

Image analysis methods for diffuse optical tomography.

Brian W. Pogue; Scott C. Davis; Xiaomei Song; Ben Brooksby; Hamid Dehghani; Keith D. Paulsen

Three major analytical tools in imaging science are summarized and demonstrated relative to optical imaging in vivo. Standard resolution testing is optimal when infinite contrast is used and hardware evaluation is the goal. However, deep tissue imaging of absorption or fluorescent contrast agents in vivo often presents a different problem, which requires contrast-detail analysis. This analysis shows that the minimum detectable sizes are in the range of 1/10 the outer diameter, whereas minimum detectable contrast values are in the range of 10 to 20% relative to the continuous background values. This is estimated for objects being in the center of the domain being imaged, and as the heterogeneous region becomes closer to the surface, the lower limit on size and contrast can become arbitrarily low and more dictated by hardware specifications. Finally, if human observer detection of abnormalities in the images is the goal, as is standard in most radiological practice, receiver operating characteristic (ROC) curve and location receiver operating characteristic curve (LROC) are used. Each of these three major areas of image interpretation and analysis are reviewed in the context of medical imaging as well as how they are used to quantify the performance of diffuse optical imaging of tissue.


Optics Letters | 2005

Spectral priors improve near-infrared diffuse tomography more than spatial priors

Ben Brooksby; Subhadra Srinivasan; Shudong Jiang; Hamid Dehghani; Brian W. Pogue; Keith D. Paulsen; John B. Weaver; Christine Kogel; Steven P. Poplack

We compare the benefits of spatial and spectral priors in near-infrared diffuse tomography image reconstruction. Although previous studies that incorporated anatomical spatial priors have shown improvement in algorithm convergence and resolution, our results indicate that functional parameter quantification by this approach can be suboptimal. The incorporation of a priori spectral information significantly improves the accuracy observed in recovered images. Specifically, phantom results show that the maximum total hemoglobin concentration ([Hb(T)]) in a region of heterogeneity reached 91% of the true value compared to 63% using spatial priors. The combination of both priors produced results accurate to 98% of the true [Hb(T)]. When both spatial and spectral priors were applied in a healthy volunteer, glandular tissue showed a higher [Hb(T)], water fraction, and scattering power compared to adipose tissue.


Journal of Biomedical Optics | 2006

Image reconstruction of effective Mie scattering parameters of breast tissue in vivo with near-infrared tomography

Xin Wang; Brian W. Pogue; Shudong Jiang; Hamid Dehghani; Xiaomei Song; Subhadra Srinivasan; Ben Brooksby; Keith D. Paulsen; Christine Kogel; Steven P. Poplack; Wendy A. Wells

A method for image reconstruction of the effective size and number density of scattering particles is discussed within the context of interpreting near-infrared (NIR) tomography images of breast tissue. An approach to use Mie theory to estimate the effective scattering parameters is examined and applied, given some assumptions about the index of refraction change expected in lipid membrane-bound scatterers. When using a limited number of NIR wavelengths in the reduced scattering spectra, the parameter extraction technique is limited to representing a continuous distribution of scatterer sizes, which is modeled as a simple exponentially decreasing distribution function. In this paper, image formation of effective scatterer size and number density is presented based on the estimation method. The method was evaluated with Intralipid phantom studies to demonstrate particle size estimation to within 9% of the expected value. Then the method was used in NIR patient images, and it indicates that for a cancer tumor, the effective scatterer size is smaller than the background breast values and the effective number density is higher. In contrast, for benign tumor patients, there is not a significant difference in effective scatterer size or number density between tumor and normal tissues. The method was used to interpret magnetic resonance imaging-coupled NIR images of adipose and fibroglandular tissues, and it indicated that the fibroglandular tissue has smaller effective scatterer size and larger effective number density than the adipose tissue does.


Applied Optics | 2005

Effects of refractive index on near-infrared tomography of the breast

Hamid Dehghani; Ben Brooksby; Brian W. Pogue; Keith D. Paulsen

Near infrared (NIR) optical tomography is an imaging technique in which internal images of optical properties are reconstructed with the boundary measurements of light propagation through the medium. Recent advances in instrumentation and theory have led to the use of this method for the detection and characterization of tumors within the female breast tissue. Most image reconstruction approaches have used the diffusion approximation and have assumed that the refractive index of the breast is constant, with a bulk value of approximately 1.4. We have applied a previously reported modified diffusion approximation, in which the refractive index for different tissues can be modeled. The model was used to generate NIR data from a realistic breast geometry containing a localized anomaly. Using this simulated data, we have reconstructed optical images, both with and without correct knowledge of the refractive-index distribution to show that the modified diffusion approximation can accurately recover the anomaly given a priori knowledge of refractive index. But using a reconstruction algorithm without the use of correct a priori information regarding the refractive-index distribution is shown as recovering the anomaly but with a degraded quality, depending on the degree of refractive index mismatch. The results suggest that provided the refractive index of breast tissue is approximately 1.3-1.4, their exclusion will have minimal effect on the reconstructed images.

Collaboration


Dive into the Ben Brooksby's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hamid Dehghani

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge