Ben C. Berks
University of Oxford
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ben C. Berks.
Molecular Microbiology | 1996
Ben C. Berks
The precursor polypeptides of periplasmic proteins binding seven types of redox cofactor have unusually long signal sequences bearing a consensus (S/T)‐R‐R‐x‐F‐L‐K motif immediately before the hydrophobic region. Such ‘double‐arginine’ signal sequences are not, in general, found on the precursors of other periplasmic proteins. It is suggested that precursor proteins with double‐arginine signal sequences share a common specialization in their export pathway. The nature of this specialization, the structure of the double‐arginine signal sequences, and the possible relationship with the double‐arginine signal peptide‐dependent thylakoid import pathway are discussed.
Molecular Microbiology | 2000
Ben C. Berks; Frank Sargent; Tracy Palmer
The Tat (twin‐arginine translocation) system is a bacterial protein export pathway with the remarkable ability to transport folded proteins across the cytoplasmic membrane. Preproteins are directed to the Tat pathway by signal peptides that bear a characteristic sequence motif, which includes consecutive arginine residues. Here, we review recent progress on the characterization of the Tat system and critically discuss the structure and operation of this major new bacterial protein export pathway.
The EMBO Journal | 1998
Frank Sargent; Erik G. Bogsch; Nicola R. Stanley; Margaret Wexler; Colin Robinson; Ben C. Berks; Tracy Palmer
We describe the identification of two Escherichia coli genes required for the export of cofactor‐containing periplasmic proteins, synthesized with signal peptides containing a twin arginine motif. Both gene products are homologous to the maize HCF106 protein required for the translocation of a subset of lumenal proteins across the thylakoid membrane. Disruption of either gene affects the export of a range of such proteins, and a complete block is observed when both genes are inactivated. The Sec protein export pathway was unaffected, indicating the involvement of the gene products in a novel export system. The accumulation of active cofactor‐containing proteins in the cytoplasm of the mutant strains suggests a role for the gene products in the translocation of folded proteins. One of the two HCF106 homologues is encoded by the first gene of a four cistron operon, tatABCD, and the second by an unlinked gene, tatE. A mutation previously assigned to the hcf106 homologue encoded at the tatABCD locus, mttA, lies instead in the tatB gene.
Cellular and Molecular Life Sciences | 2001
David J. Richardson; Ben C. Berks; David A. Russell; Stephen Spiro; Clare Taylor
Abstract. Prokaryotic nitrate reduction can serve a number of physiological roles and can be catalysed by a number of biochemically distinct nitrate reductases. Three distinct nitrate reductase classes can be indentified in prokaryotes, NAS, NAR and NAP. NAS is located in the cytoplasmic compartment and participates in nitrogen assimilation. NAR is usually a three-subunit complex anchored to the cytoplasmic face of the membrane with its active site located in the cytoplasmic compartment and is involved in anaerobic nitrate respiration. NAP is a two-subunit complex, located in the periplasmic compartment, that is coupled to quinol oxidation via a membrane anchored tetraheme cytochrome. It shows considerable functional flexibility by participating in anaerobic respiration or redox energy dissipation depending on the organism in which it is found. The members of all three classes of enzymes bind the bis-molybdopterin guanine dinucleotide cofactor at the active site, but they differ markedly in the number and nature of cofactors used to transfer electrons to this site. Analysis of prokaryotic genome sequences available at the time of writing reveals that the different nitrate reductases are phylogenetically widespread.
Nature Reviews Microbiology | 2012
Tracy Palmer; Ben C. Berks
The twin-arginine translocation (Tat) protein export system is present in the cytoplasmic membranes of most bacteria and archaea and has the highly unusual property of transporting fully folded proteins. The system must therefore provide a transmembrane pathway that is large enough to allow the passage of structured macromolecular substrates of different sizes but that maintains the impermeability of the membrane to ions. In the Gram-negative bacterium Escherichia coli, this complex task can be achieved by using only three small membrane proteins: TatA, TatB and TatC. In this Review, we summarize recent advances in our understanding of how this remarkable machine operates.
Journal of Biological Chemistry | 1999
Frank Sargent; Nicola R. Stanley; Ben C. Berks; Tracy Palmer
In Escherichia coli, transmembrane translocation of proteins can proceed by a number of routes. A subset of periplasmic proteins are exported via the Tat pathway to which proteins are directed by N-terminal “transfer peptides” bearing the consensus (S/T)RRXFLK “twin-arginine” motif. The Tat system involves the integral membrane proteins TatA, TatB, TatC, and TatE. Of these, TatA, TatB, and TatE are homologues of the Hcf106 component of the ΔpH-dependent protein import system of plant thylakoids. Deletion of the tatB gene alone is sufficient to block the export of seven endogenous Tat substrates, including hydrogenase-2. Complementation analysis indicates that while TatA and TatE are functionally interchangeable, the TatB protein is functionally distinct. This conclusion is supported by the observation that Helicobacter pylori tatA will complement an E. coli tatA mutant, but not a tatB mutant. Analysis of Tat component stability in various tat deletion backgrounds shows that TatC is rapidly degraded in the absence of TatB suggesting that TatC complexes, and is stabilized by, TatB.
Advances in Microbial Physiology | 2003
Ben C. Berks; Tracy Palmer; Frank Sargent
The Tat (twin arginine translocation) protein transport system functions to export folded protein substrates across the bacterial cytoplasmic membrane and to insert certain integral membrane proteins into that membrane. It is entirely distinct from the Sec pathway. Here, we describe our current knowledge of the molecular features of the Tat transport system. In addition, we discuss the roles that the Tat pathway plays in the bacterial cell, paying particular attention to the involvement of the Tat pathway in the biogenesis of cofactor-containing proteins, in cell wall biosynthesis and in bacterial pathogenicity.
Microbiology | 1997
Simon C. Andrews; Ben C. Berks; Joseph McClay; Andrew Ambler; Michael A. Quail; John R. Guest
The nucleotide sequence has been determined for a twelve-gene operon of Escherichia coli designated the hyf operon (hyfABCDEFGHIR-focB). The hyf operon is located at 55.8-56.0 min and encodes a putative nine-subunit hydrogenase complex (hydrogenase four or Hyf), a potential formate- and sigma 54-dependent transcriptional activator, HyfR (related to FhlA), and a possible formate transporter, FocB (related to FocA). Five of the nine Hyf-complex subunits are related to subunits of both the E. coli hydrogenase-3 complex (Hyc) and the proton-translocating NADH:quinone oxidoreductases (complex I and Nuo), whereas two Hyf subunits are related solely to NADH:quinone oxidoreductase subunits. The Hyf components include a predicted 523 residue [Ni-Fe] hydrogenase (large subunit) with an N-terminus (residues 1-170) homologous to the 30 kDa or NuoC subunit of complex I. It is proposed that Hyf, in conjunction with formate dehydrogenase H (Fdh-H), forms a hitherto unrecognized respiration-linked proton-translocating formate hydrogenlyase (FHL-2). It is likely that HyfR acts as a formate-dependent regulator of the hyf operon and that FocB provides the Hyf complex with external formate as substrate.
Molecular Microbiology | 1999
Michael Hensel; Andrew P. Hinsley; Thomas Nikolaus; Gary Sawers; Ben C. Berks
A range of bacteria are able to use tetrathionate as a terminal respiratory electron acceptor. Here we report the identification and characterization of the ttrRSBCA locus required for tetrathionate respiration in Salmonella typhimurium LT2a. The ttr genes are located within Salmonella pathogenicity island 2 at centisome 30.5. ttrA, ttrB and ttrC are the tetrathionate reductase structural genes. Sequence analysis suggests that TtrA contains a molybdopterin guanine dinucleotide cofactor and a [4Fe–4S] cluster, that TtrB binds four [4Fe–4S] clusters, and that TtrC is an integral membrane protein containing a quinol oxidation site. TtrA and TtrB are predicted to be anchored by TtrC to the periplasmic face of the cytoplasmic membrane implying a periplasmic site for tetrathionate reduction. It is inferred that the tetrathionate reductase, together with thiosulphate and polysulphide reductases, make up a previously unrecognized class of molybdopterin‐dependent enzymes that carry out the reductive cleavage of sulphur–sulphur bonds. Cys‐256 in TtrA is proposed to be the amino acid ligand to the molybdopterin cofactor. TtrS and TtrR are the sensor and response regulator components of a two‐component regulatory system that is absolutely required for transcription of the ttrBCA operon. Expression of an active tetrathionate reduction system also requires the anoxia‐responsive global transcriptional regulator Fnr. The ttrRSBCA gene cluster confers on Escherichia coli the ability to respire with tetrathionate as electron acceptor.
Journal of Bacteriology | 2001
Nicola R. Stanley; Kim Findlay; Ben C. Berks; Tracy Palmer
The Tat system is a recently discovered protein export pathway that serves to translocate folded proteins, often containing redox cofactors, across the bacterial cytoplasmic membrane. Here we report that tat strains are associated with a mutant cell septation phenotype, where chains of up to 10 cells are evident. Mutant strains are also hypersensitive to hydrophobic drugs and to lysis by lysozyme in the absence of EDTA, and they leak periplasmic enzymes, characteristics that are consistent with an outer membrane defect. Both phenotypes are similar to those displayed by strains carrying point mutations in the lpxC (envA) gene. The phenotype was not replicated by mutations affecting synthesis and/or activity of all known or predicted Tat substrates.