Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ben C. King is active.

Publication


Featured researches published by Ben C. King.


Journal of Immunology | 2012

Truncated and Full-Length Thioredoxin-1 Have Opposing Activating and Inhibitory Properties for Human Complement with Relevance to Endothelial Surfaces

Ben C. King; Justyna Nowakowska; Christian M. Karsten; Jörg Köhl; Erik Renström; Anna M. Blom

Thioredoxin (Trx)-1 is a small, ubiquitously expressed redox-active protein with known important cytosolic functions. However, Trx1 is also upregulated in response to various stress stimuli, is found both at the cell surface and secreted into plasma, and has known anti-inflammatory and antiapoptotic properties. Previous animal studies have demonstrated that exogenous Trx1 delivery can have therapeutic effects in a number of disease models and have implicated an interaction of Trx1 with the complement system. We found that Trx1 is expressed in a redox-active form at the surface of HUVEC and acts as an inhibitor of complement deposition in a manner dependent on its Cys-Gly-Pro-Cys active site. Inhibition occurred at the point of the C5 convertase of complement, regulating production of C5a and the membrane attack complex. A truncated form of Trx1 also exists in vivo, Trx80, which has separate nonoverlapping functions compared with the full-length Trx1. We found that Trx80 activates the classical and alternative pathways of complement activation, leading to C5a production, but the inflammatory potential of this was also limited by the binding of inhibitors C4b-binding protein and factor H. This study adds a further role to the known anti-inflammatory properties of Trx1 and highlights the difference in function between the full-length and truncated forms.


PLOS ONE | 2012

Functional analyses of complement convertases using C3 and C5-depleted sera.

Marcin Okroj; Emelie Holmquist; Ben C. King; Anna M. Blom

C3 and C5 convertases are central stages of the complement cascade since they converge the different initiation pathways, augment complement activation by an amplification loop and lead to a common terminal pathway resulting in the formation of the membrane attack complex. Several complement inhibitors attenuate convertase formation and/or accelerate dissociation of convertase complexes. Functional assays used to study these processes are often performed using purified complement components, from which enzymatic complexes are reconstituted on the surface of erythrocytes or artificial matrices. This strategy enables identification of individual interactions between convertase components and putative regulators but carries an inherent risk of detecting non-physiological interactions that would not occur in a milieu of whole serum. Here we describe a novel, alternative method based on C3 or C5-depleted sera, which support activation of the complement cascade up to the desired stages of convertases. This approach allows fast and simple assessment of the influence of putative regulators on convertase formation and stability. As an example of practical utility of the assay, we performed studies on thioredoxin-1 in order to clarify the mechanism of its influence on complement convertases.


Journal of Immunology | 2016

CD46 Activation Regulates miR-150–Mediated Control of GLUT1 Expression and Cytokine Secretion in Human CD4+ T Cells

Ben C. King; Jonathan Lou S. Esguerra; Ewelina Golec; Lena Eliasson; Claudia Kemper; Anna M. Blom

CD46 is a cell surface complement inhibitor widely expressed in human tissues, in contrast to mice, where expression is limited to the testes. In humans, it has been identified as an important T cell costimulatory receptor, and patients deficient in CD46 or its endogenous ligands are unable to mount effective Th1 T cell responses. Stimulation of human CD4+ T cells with CD3 and CD46 also leads to the differentiation of a “switched” Th1 population, which shuts down IFN-γ secretion and upregulates IL-10 and is thought to be important for negative feedback regulation of the Th1 response. In the present study, we show that CD46 costimulation leads to amplified microRNA (miR) expression changes in human CD4+ T cells, with associated increases in activation more potent than those mediated by the “classic” costimulator CD28. Blockade of cell surface CD46 inhibited CD28-mediated costimulation, identifying autocrine CD46 signaling as downstream of CD28. We also identify a downregulation of miR-150 in CD46-costimulated T cells and identify the glucose transporter 1 encoding transcript SLC2A1 as a target of miR-150 regulation, connecting miR-150 with modulation of glucose uptake. We also investigated microRNA expression profiles of CD46-induced switched IL-10–secreting Th1 T cells and found increased expression of miR-150, compared with IFN-γ–secreting Th1 cells. Knockdown of miR-150 led to a reduction in IL-10 but not IFN-γ. CD46 therefore controls both Th1 activation and regulation via a miR-150–dependent mechanism.


BMC Cancer | 2015

The human complement inhibitor Sushi Domain-Containing Protein 4 (SUSD4) expression in tumor cells and infiltrating T cells is associated with better prognosis of breast cancer patients.

Emelie Englund; Bart Reitsma; Ben C. King; Astrid Escudero-Esparza; Sioned Owen; Akira Orimo; Marcin Okroj; Lola Anagnostaki; Wen Guo Jiang; Karin Jirström; Anna M. Blom

BackgroundThe human Sushi Domain-Containing Protein 4 (SUSD4) was recently shown to function as a novel inhibitor of the complement system, but its role in tumor progression is unknown.MethodsUsing immunohistochemistry and quantitative PCR, we investigated SUSD4 expression in breast cancer tissue samples from two cohorts. The effect of SUSD4 expression on cell migration and invasion was studied in vitro using two human breast cancer cell lines overexpressing SUSD4.ResultsTissue stainings revealed that both tumor cells and tumor-infiltrating cells expressed SUSD4. The highest SUSD4 expression was detected in differentiated tumors with decreased rate of metastasis, and SUSD4 expression was associated with improved survival of the patients. Moreover, forced SUSD4 expression in human breast cancer cells attenuated their migratory and invasive traits in culture. SUSD4 expression also inhibited colony formation of human breast cancer cells cultured on carcinoma-associated fibroblasts. Furthermore, large numbers of SUSD4-expressing T cells in the tumor stroma associated with better overall survival of the breast cancer patients.ConclusionOur findings indicate that SUSD4 expression in both breast cancer cells and T cells infiltrating the tumor-associated stroma is useful to predict better prognosis of breast cancer patients.


Tumor Biology | 2007

Immunotherapy with Antibody-Targeted HLA Class I Complexes: Results of in vivo Tumour Cell Killing and Therapeutic Vaccination

Philip Savage; Julian Dyson; M. Milrain; D. Mathews; Ben C. King; H.T.C. Chan; L. Barber; Agamemnon A. Epenetos; Graham S. Ogg; Andrew J. McMichael; Martin J. Glennie; Ruth R. French

Background: The delivery of antibody-targeted major histocompatibility complex (MHC) class I complexes containing immunogenic peptides to the surface of tumour cells allows cytotoxic T lymphocytes (CTLs) of non-tumour specificity to recognise and kill the tumour cell. Previous studies have demonstrated the activity of this system in vitro and in a simple pre-clinical model. This system has also been shown to be an effective method of expanding antigen-specific CTLs in vitro when used to target MHC class I complexes to the surface of B cells. Methods: Mice were immunised with ovalbumin and the survival of EL4Hu20 lymphoma cells targeted with H2-Db/Ova complexes and control MHC complexes was compared by FACS analysis. A tumour protection assay was performed where immunised mice were injected B16Hu20 melanoma cells targeted with H2-Kb/Ova or control complexes. T cell expansion in vivo was examined by administering B cells targeted with MHC class I/peptide complexes and assessing T cell expansion by tetramer analysis. Results: In vivo killing of H2-Db/Ova-targeted lymphoma cells in the immunised mice was demonstrated with these cells present at only 12% of the level of the control cells. In contrast, in non-immunised mice the survival of H2-Db/Ova-targeted and control cells was comparable. In the tumour protection assay, injection of melanoma cells targeted with H2-Kb/Ova complexes resulted in the development of only a solitary metastasis in each mouse. This compared to an average of 130 metastases in the control mice injected with B16Hu20 cells targeted with a control MHC peptide complex. In vivo CTL expansion was demonstrated after a single intravenous administration of Daudi B cells coated with H2-Db/Uty complexes produced an increase in the proportion of Uty-reactive CTLs from 3.3 to 21.5%. Conclusion: This study supports the development of antibody-delivered MHC complexes as a method of producing CTL-mediated lysis of cancer cells in vivo. As a therapeutic vaccine, the system may provide an effective approach for expanding oligoclonal T cell responses in vivo in the treatment of malignancy and infectious diseases.


Molecular Immunology | 2017

Non-traditional roles of complement in type 2 diabetes: Metabolism, insulin secretion and homeostasis.

Ben C. King; Anna M. Blom

Type 2 Diabetes (T2D) is a disease of increasing importance and represents a growing burden on global healthcare and human health. In T2D, loss of effectiveness of insulin signaling in peripheral tissues cannot be compensated for by adequate insulin secretion, leading to hyperglycemia and resultant complications. In recent years, inflammation has been identified as a central component of T2D, both in inducing peripheral insulin resistance as well as in the pancreatic islet, where it contributes to loss of insulin secretion and death of insulin-secreting beta cells. In this review we will focus on non-traditional roles of complement proteins which have been identified in T2D-associated inflammation, beta cell secretory function, and in maintaining homeostasis of the pancreatic islet. Improved understanding of both traditional and novel roles of complement proteins in T2D may lead to new therapeutic approaches for this global disease.


Journal of Biological Chemistry | 2016

C4b-binding protein protects β-cells from islet amyloid polypeptide-induced cytotoxicity

Jonatan Sjölander; Elin Byman; Klaudia Kulak; Sara C. Nilsson; Enming Zhang; Ulrika Krus; Gunilla T. Westermark; Petter Storm; Ben C. King; Erik Renström; Anna M. Blom

C4BP (C4b-binding protein) is a polymer of seven identical α chains and one unique β chain synthesized in liver and pancreas. We showed previously that C4BP enhances islet amyloid polypeptide (IAPP) fibril formation in vitro. Now we report that polymeric C4BP strongly inhibited lysis of human erythrocytes incubated with monomeric IAPP, whereas no lysis was observed after incubation with preformed IAPP fibrils. In contrast, incubation with the monomeric α-chain of C4BP was less effective. These data indicate that polymeric C4BP with multiple binding sites for IAPP neutralizes lytic activity of IAPP. Furthermore, addition of monomeric IAPP to a rat insulinoma cell line (INS-1) resulted in decreased cell viability, which was restored in the presence of physiological concentrations of C4BP. Treatment of INS-1 cells and primary rat islets with IAPP also diminished their ability to secrete insulin upon stimulation with glucose, which was reversed in the presence of C4BP. Further, C4BP was internalized together with IAPP into INS-1 cells. Pathway analyses of mRNA expression microarray data indicated that cells exposed to C4BP and IAPP in comparison with IAPP alone increased expression of genes involved in cholesterol synthesis. Depletion of cholesterol through methyl-β-cyclodextrin or cholesterol oxidase abolished the protective effect of C4BP on IAPP cytotoxicity of INS-1 cells. Also, inhibition of phosphoinositide 3-kinase but not NF-κB had a similar effect. Taken together, C4BP protects β-cells from IAPP cytotoxicity by modulating IAPP fibril formation extracellularly and also, after uptake by the cells, by enhancing cholesterol synthesis.


Diabetologia | 2017

The human serum protein C4b-binding protein inhibits pancreatic IAPP-induced inflammasome activation

Klaudia Kulak; Gunilla T. Westermark; Nikolina Papac-Milicevic; Erik Renström; Anna M. Blom; Ben C. King

Aims/hypothesisInflammasome activation and subsequent IL-1β production is a driver of islet pathology in type 2 diabetes. Oligomers, but not mature amyloid fibrils, of human islet amyloid polypeptide (IAPP), which is co-secreted with insulin, trigger NOD-like receptor pyrin domain containing-3 (NLRP3) inflammasome activation. C4b-binding protein (C4BP), present in serum, binds to IAPP and affects transition of IAPP monomers and oligomers to amyloid fibrils. We therefore hypothesised that C4BP inhibits IAPP-mediated inflammasome activation and IL-1β production.MethodsMacrophages were exposed to IAPP in the presence or absence of plasma-purified human C4BP, and inflammasome activation was assessed by IL-1β secretion as detected by ELISA and reporter cell lines. IAPP fibrillation was assessed by thioflavin T assay. Uptake of IAPP–C4BP complexes and their effects on phagolysosomal stability were assessed by flow cytometry and confocal microscopy. The effect of C4BP regulation of IAPP-mediated inflammasome activation on beta cell function was assessed using a clonal rat beta cell line. Immunohistochemistry was used to examine the association of IAPP amyloid deposits and macrophage infiltration in isolated human and mouse pancreatic islets, and expression of C4BP from isolated human pancreatic islets was assessed by quantitative PCR, immunohistochemistry and western blot.ResultsC4BP significantly inhibited IAPP-mediated IL-1β secretion from primed macrophages at physiological concentrations in a dose-dependent manner. C4BP bound to and was internalised together with IAPP. C4BP did not affect IAPP uptake into phagolysosomal compartments, although it did inhibit its formation into amyloid fibrils. The loss of macrophage phagolysosomal integrity induced by IAPP incubation was inhibited by co-incubation with C4BP. Supernatant fractions from macrophages activated with IAPP inhibited both insulin secretion and viability of clonal beta cells in an IL-1β-dependent manner but the presence of C4BP during macrophage IAPP incubation rescued beta cell function and viability. In human and mouse islets, the presence of amyloid deposits correlated with higher numbers of infiltrating macrophages. Isolated human islets expressed and secreted C4BP, which increased with addition of IL-1β.Conclusions/interpretationIAPP deposition is associated with inflammatory cell infiltrates in pancreatic islets. C4BP blocks IAPP-induced inflammasome activation by preventing the loss of macrophage phagolysosomal integrity required for NLRP3 activation. The consequence of this is the preservation of beta cell function and viability. C4BP is secreted directly from human pancreatic islets and this increases in response to inflammatory cytokines. We therefore propose that C4BP acts as an extracellular chaperone protein that limits the proinflammatory effects of IAPP.


Journal of Immunology | 2016

FACIN, a Double-Edged Sword of the Emerging Periodontal Pathogen Filifactor alocis: A Metabolic Enzyme Moonlighting as a Complement Inhibitor

Monika Jusko; Beata Miedziak; David Ermert; Michal Magda; Ben C. King; Ewa Bielecka; Kristian Riesbeck; Sigrun Eick; Jan Potempa; Anna M. Blom

Periodontal disease is one of the most common inflammatory infectious diseases worldwide and it is associated with other syndromes, such as cardiovascular disease or rheumatoid arthritis. Recent advances in sequencing allowed for identification of novel periodontopathogens such as Gram-positive Filifactor alocis, but its virulence mechanisms remain largely unknown. We confirmed that F. alocis is a prevalent species in periodontitis patients, and we also observed strong correlation of this bacterium with clinical parameters, highlighting its role in the pathogenesis of the disease. Further, we found that preincubation of human serum with F. alocis resulted in abolished bactericidal activity and that F. alocis was surviving readily in full blood. We demonstrated that one of the key contributors to F. alocis complement resistance is a unique protein, FACIN (F. alocis complement inhibitor), which binds to C3, resulting in suppression of all complement pathways. Interestingly, FACIN is a nonclassical cell surface protein, a cytosolic enzyme acetylornithine transaminase, for which we now identified a moonlighting function. FACIN binds to C3 alone, but more importantly it also captures activated complement factor 3 within the complex with factor B, thereby locking in the convertase in an inactive state. Because of the indispensable role of alternative pathway convertase in amplifying complement cascades, its inhibition by FACIN results in a very potent downregulation of activated complement factor 3 opsonization on the pathogen surface, accompanied by reduction of downstream C5 cleavage.


Biochemical and Biophysical Research Communications | 2015

Complement inhibitor CD55 governs the integrity of membrane rafts in pancreatic beta cells, but plays no role in insulin secretion

Vini Nagaraj; Ben C. King; Petter Storm; Petter Vikman; Emilia Ottosson-Laakso; Anna M. Blom; Erik Renström

CD55 is a glycosylphosphatidylinositol-anchored protein, which inhibits complement activation by acting on the complement C3 convertases. CD55 is widely localized in the cholesterol rich regions of the cell plasma membrane termed membrane rafts. CD55 is attached to these specialized regions via a GPI link on the outer leaflet of the plasma membrane. Membrane rafts anchor many important signaling proteins, which control several cellular functions within the cell. For example, we recently demonstrated that the membrane raft protein and complement inhibitor CD59 also controls insulin secretion by an intracellular mechanism. Therefore, we have in this study aimed at addressing the expression and function of CD55 in pancreatic beta cells. To this end, we observe that CD55 is highly expressed in INS1 832/13 beta cells as well as human pancreatic islets. Diabetic human islets show a tendency for increased expression of CD55 when compared to the healthy controls. Importantly, silencing of CD55 in INS1 832/13 cells does not affect their insulin secretory capacity. On the other hand, silencing of CD55 diminished the intensity of membrane rafts as determined by Atto-SM staining. We hence conclude that CD55 expression is affected by glycemic status in human islets and plays a critical role in maintaining the conserved structure of rafts in pancreatic islets, which is similar to that of the related complement inhibitor CD59. However CD55 does not interfere with insulin secretion in beta cells, which is in sharp contrast to the action of the complement inhibitor CD59.

Collaboration


Dive into the Ben C. King's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge