Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ben Calderhead is active.

Publication


Featured researches published by Ben Calderhead.


Computational Statistics & Data Analysis | 2009

Estimating Bayes factors via thermodynamic integration and population MCMC

Ben Calderhead; Mark A. Girolami

A Bayesian approach to model comparison based on the integrated or marginal likelihood is considered, and applications to linear regression models and nonlinear ordinary differential equation (ODE) models are used as the setting in which to elucidate and further develop existing statistical methodology. The focus is on two methods of marginal likelihood estimation. First, a statistical failure of the widely employed Posterior Harmonic Mean estimator is highlighted. It is demonstrated that there is a systematic bias capable of significantly skewing Bayes factor estimates, which has not previously been highlighted in the literature. Second, a detailed study of the recently proposed Thermodynamic Integral estimator is presented, which characterises the error associated with its discrete form. An experimental study using analytically tractable linear regression models highlights substantial differences with recently published results regarding optimal discretisation. Finally, with the insights gained, it is demonstrated how Population MCMC and thermodynamic integration methods may be elegantly combined to estimate Bayes factors accurately enough to discriminate between nonlinear models based on systems of ODEs, which has important application in describing the behaviour of complex processes arising in a wide variety of research areas, such as Systems Biology, Computational Ecology and Chemical Engineering.


Proceedings of the National Academy of Sciences of the United States of America | 2014

A general construction for parallelizing Metropolis−Hastings algorithms

Ben Calderhead

Significance Many computational problems in modern-day statistics are heavily dependent on Markov chain Monte Carlo (MCMC) methods. These algorithms allow us to evaluate arbitrary probability distributions; however, they are inherently sequential in nature due to the Markov property, which severely limits their computational speed. We propose a general approach that allows scalable parallelization of existing MCMC methods. We do so by defining a finite-state Markov chain on multiple proposals in a way that ensures asymptotic convergence to the correct stationary distribution. In example simulations, we demonstrate up to two orders of magnitude improvement in overall computational performance. Markov chain Monte Carlo methods (MCMC) are essential tools for solving many modern-day statistical and computational problems; however, a major limitation is the inherently sequential nature of these algorithms. In this paper, we propose a natural generalization of the Metropolis−Hastings algorithm that allows for parallelizing a single chain using existing MCMC methods. We do so by proposing multiple points in parallel, then constructing and sampling from a finite-state Markov chain on the proposed points such that the overall procedure has the correct target density as its stationary distribution. Our approach is generally applicable and straightforward to implement. We demonstrate how this construction may be used to greatly increase the computational speed and statistical efficiency of a variety of existing MCMC methods, including Metropolis-Adjusted Langevin Algorithms and Adaptive MCMC. Furthermore, we show how it allows for a principled way of using every integration step within Hamiltonian Monte Carlo methods; our approach increases robustness to the choice of algorithmic parameters and results in increased accuracy of Monte Carlo estimates with little extra computational cost.


Interface Focus | 2011

Statistical analysis of nonlinear dynamical systems using differential geometric sampling methods

Ben Calderhead; Mark A. Girolami

Mechanistic models based on systems of nonlinear differential equations can help provide a quantitative understanding of complex physical or biological phenomena. The use of such models to describe nonlinear interactions in molecular biology has a long history; however, it is only recently that advances in computing have allowed these models to be set within a statistical framework, further increasing their usefulness and binding modelling and experimental approaches more tightly together. A probabilistic approach to modelling allows us to quantify uncertainty in both the model parameters and the model predictions, as well as in the model hypotheses themselves. In this paper, the Bayesian approach to statistical inference is adopted and we examine the significant challenges that arise when performing inference over nonlinear ordinary differential equation models describing cell signalling pathways and enzymatic circadian control; in particular, we address the difficulties arising owing to strong nonlinear correlation structures, high dimensionality and non-identifiability of parameters. We demonstrate how recently introduced differential geometric Markov chain Monte Carlo methodology alleviates many of these issues by making proposals based on local sensitivity information, which ultimately allows us to perform effective statistical analysis. Along the way, we highlight the deep link between the sensitivity analysis of such dynamic system models and the underlying Riemannian geometry of the induced posterior probability distributions.


PLOS Computational Biology | 2014

Ten Simple Rules for Effective Computational Research

James M. Osborne; Miguel O. Bernabeu; Maria Bruna; Ben Calderhead; Jonathan Cooper; Neil Dalchau; Sara-Jane Dunn; Alexander G. Fletcher; Robin Freeman; Derek Groen; Bernhard Knapp; Greg J. McInerny; Gary R. Mirams; Joe Pitt-Francis; Biswa Sengupta; David W. Wright; Christian A. Yates; David J. Gavaghan; Stephen Emmott; Charlotte M. Deane

In order to attempt to understand the complexity inherent in nature, mathematical, statistical and computational techniques are increasingly being employed in the life sciences. In particular, the use and development of software tools is becoming vital for investigating scientific hypotheses, and a wide range of scientists are finding software development playing a more central role in their day-to-day research. In fields such as biology and ecology, there has been a noticeable trend towards the use of quantitative methods for both making sense of ever-increasing amounts of data [1] and building or selecting models [2]. As Research Fellows of the “2020 Science” project (http://www.2020science.net), funded jointly by the EPSRC (Engineering and Physical Sciences Research Council) and Microsoft Research, we have firsthand experience of the challenges associated with carrying out multidisciplinary computation-based science [3]–[5]. In this paper we offer a jargon-free guide to best practice when developing and using software for scientific research. While many guides to software development exist, they are often aimed at computer scientists [6] or concentrate on large open-source projects [7]; the present guide is aimed specifically at the vast majority of scientific researchers: those without formal training in computer science. We present our ten simple rules with the aim of enabling scientists to be more effective in undertaking research and therefore maximise the impact of this research within the scientific community. While these rules are described individually, collectively they form a single vision for how to approach the practical side of computational science. Our rules are presented in roughly the chronological order in which they should be undertaken, beginning with things that, as a computational scientist, you should do before you even think about writing any code. For each rule, guides on getting started, links to relevant tutorials, and further reading are provided in the supplementary material (Text S1).


Computational Geosciences | 2012

Population MCMC methods for history matching and uncertainty quantification

Lina Mahgoub Yahya Mohamed; Ben Calderhead; Maurizio Filippone; Michael Andrew Christie; Mark A. Girolami

This paper presents the application of a population Markov Chain Monte Carlo (MCMC) technique to generate history-matched models. The technique has been developed and successfully adopted in challenging domains such as computational biology but has not yet seen application in reservoir modelling. In population MCMC, multiple Markov chains are run on a set of response surfaces that form a bridge from the prior to posterior. These response surfaces are formed from the product of the prior with the likelihood raised to a varying power less than one. The chains exchange positions, with the probability of a swap being governed by a standard Metropolis accept/reject step, which allows for large steps to be taken with high probability. We show results of Population MCMC on the IC Fault Model—a simple three-parameter model that is known to have a highly irregular misfit surface and hence be difficult to match. Our results show that population MCMC is able to generate samples from the complex, multi-modal posterior probability distribution of the IC Fault model very effectively. By comparison, previous results from stochastic sampling algorithms often focus on only part of the region of high posterior probability depending on algorithm settings and starting points.


Bayesian Analysis | 2016

Bayesian Solution Uncertainty Quantification for Differential Equations

Oksana A. Chkrebtii; David A. Campbell; Ben Calderhead; Mark A. Girolami

We explore probability modelling of discretization uncertainty for system states defined implicitly by ordinary or partial differential equations. Accounting for this uncertainty can avoid posterior under-coverage when likelihoods are constructed from a coarsely discretized approximation to system equations. A formalism is proposed for inferring a fixed but a priori unknown model trajectory through Bayesian updating of a prior process conditional on model information. A one-step-ahead sampling scheme for interrogating the model is described, its consistency and first order convergence properties are proved, and its computational complexity is shown to be proportional to that of numerical explicit one-step solvers. Examples illustrate the flexibility of this framework to deal with a wide variety of complex and large-scale systems. Within the calibration problem, discretization uncertainty defines a layer in the Bayesian hierarchy, and a Markov chain Monte Carlo algorithm that targets this posterior distribution is presented. This formalism is used for inference on the JAK-STAT delay differential equation model of protein dynamics from indirectly observed measurements. The discussion outlines implications for the new field of probabilistic numerics.


Bulletin of the American Meteorological Society | 2014

Changing How Earth System Modeling is Done to Provide More Useful Information for Decision Making, Science, and Society

Matthew J. Smith; Paul I. Palmer; Drew W. Purves; Mark C. Vanderwel; Vassily Lyutsarev; Ben Calderhead; Lucas Joppa; Christopher M. Bishop; Stephen Emmott

New details about natural and anthropogenic processes are continually added to models of the Earth system, anticipating that the increased realism will increase the accuracy of their predictions. However, perspectives differ about whether this approach will improve the value of the information the models provide to decision makers, scientists, and societies. The present bias toward increasing realism leads to a range of updated projections, but at the expense of uncertainty quantification and model tractability. This bias makes it difficult to quantify the uncertainty associated with the projections from any one model or to the distribution of projections from different models. This in turn limits the utility of climate model outputs for deriving useful information such as in the design of effective climate change mitigation and adaptation strategies or identifying and prioritizing sources of uncertainty for reduction. Here we argue that a new approach to model development is needed, focused on the delive...


eLife | 2015

Science hackathons for developing interdisciplinary research and collaborations

Derek Groen; Ben Calderhead

Science hackathons can help academics, particularly those in the early stage of their careers, to build collaborations and write research proposals.


BMC Bioinformatics | 2014

Hamiltonian Monte Carlo methods for efficient parameter estimation in steady state dynamical systems

Andrei Kramer; Ben Calderhead; Nicole Radde

BackgroundParameter estimation for differential equation models of intracellular processes is a highly relevant bu challenging task. The available experimental data do not usually contain enough information to identify all parameters uniquely, resulting in ill-posed estimation problems with often highly correlated parameters. Sampling-based Bayesian statistical approaches are appropriate for tackling this problem. The samples are typically generated via Markov chain Monte Carlo, however such methods are computationally expensive and their convergence may be slow, especially if there are strong correlations between parameters. Monte Carlo methods based on Euclidean or Riemannian Hamiltonian dynamics have been shown to outperform other samplers by making proposal moves that take the local sensitivities of the system’s states into account and accepting these moves with high probability. However, the high computational cost involved with calculating the Hamiltonian trajectories prevents their widespread use for all but the smallest differential equation models. The further development of efficient sampling algorithms is therefore an important step towards improving the statistical analysis of predictive models of intracellular processes.ResultsWe show how state of the art Hamiltonian Monte Carlo methods may be significantly improved for steady state dynamical models. We present a novel approach for efficiently calculating the required geometric quantities by tracking steady states across the Hamiltonian trajectories using a Newton-Raphson method and employing local sensitivity information. Using our approach, we compare both Euclidean and Riemannian versions of Hamiltonian Monte Carlo on three models for intracellular processes with real data and demonstrate at least an order of magnitude improvement in the effective sampling speed. We further demonstrate the wider applicability of our approach to other gradient based MCMC methods, such as those based on Langevin diffusions.ConclusionOur approach is strictly benefitial in all test cases. The Matlab sources implementing our MCMC methodology is available from https://github.com/a-kramer/ode_rmhmc.


Methods of Molecular Biology | 2013

Bayesian Approaches for Mechanistic Ion Channel Modeling

Ben Calderhead; Michael Epstein; Lucia G. Sivilotti; Mark A. Girolami

We consider the Bayesian analysis of mechanistic models describing the dynamic behavior of ligand-gated ion channels. The opening of the transmembrane pore in an ion channel is brought about by conformational changes in the protein, which results in a flow of ions through the pore. Remarkably, given the diameter of the pore, the flow of ions from a small number of channels or indeed from a single ion channel molecule can be recorded experimentally. This produces a large time-series of high-resolution experimental data, which can be used to investigate the gating process of these channels. We give a brief overview of the achievements and limitations of alternative maximum-likelihood approaches to this type of modeling, before investigating the statistical issues associated with analyzing stochastic model reaction mechanisms from a Bayesian perspective. Finally, we compare a number of Markov chain Monte Carlo algorithms that may be used to tackle this challenging inference problem.

Collaboration


Dive into the Ben Calderhead's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Derek Groen

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge