Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ben Emery is active.

Publication


Featured researches published by Ben Emery.


The Journal of Neuroscience | 2008

A Transcriptome Database for Astrocytes, Neurons, and Oligodendrocytes: A New Resource for Understanding Brain Development and Function

John D. Cahoy; Ben Emery; Amit Kaushal; Lynette C. Foo; Jennifer L. Zamanian; Karen S. Christopherson; Yi Xing; Jane L. Lubischer; Paul A. Krieg; Sergey A. Krupenko; Wesley J. Thompson; Ben A. Barres

Understanding the cell–cell interactions that control CNS development and function has long been limited by the lack of methods to cleanly separate neural cell types. Here we describe methods for the prospective isolation and purification of astrocytes, neurons, and oligodendrocytes from developing and mature mouse forebrain. We used FACS (fluorescent-activated cell sorting) to isolate astrocytes from transgenic mice that express enhanced green fluorescent protein (EGFP) under the control of an S100β promoter. Using Affymetrix GeneChip Arrays, we then created a transcriptome database of the expression levels of >20,000 genes by gene profiling these three main CNS neural cell types at various postnatal ages between postnatal day 1 (P1) and P30. This database provides a detailed global characterization and comparison of the genes expressed by acutely isolated astrocytes, neurons, and oligodendrocytes. We found that Aldh1L1 is a highly specific antigenic marker for astrocytes with a substantially broader pattern of astrocyte expression than the traditional astrocyte marker GFAP. Astrocytes were enriched in specific metabolic and lipid synthetic pathways, as well as the draper/Megf10 and Mertk/integrin αvβ5 phagocytic pathways suggesting that astrocytes are professional phagocytes. Our findings call into question the concept of a “glial” cell class as the gene profiles of astrocytes and oligodendrocytes are as dissimilar to each other as they are to neurons. This transcriptome database of acutely isolated purified astrocytes, neurons, and oligodendrocytes provides a resource to the neuroscience community by providing improved cell-type-specific markers and for better understanding of neural development, function, and disease.


Neuron | 2010

Dicer1 and miR-219 Are required for normal oligodendrocyte differentiation and myelination.

Jason C. Dugas; Trinna L. Cuellar; Anja R. Scholze; Brandon Ason; Adiljan Ibrahim; Ben Emery; Jennifer L. Zamanian; Lynette C. Foo; Michael T. McManus; Ben A. Barres

To investigate the role of microRNAs in regulating oligodendrocyte (OL) differentiation and myelination, we utilized transgenic mice in which microRNA processing was disrupted in OL precursor cells (OPCs) and OLs by targeted deletion of Dicer1. We found that inhibition of OPC-OL miRNA processing disrupts normal CNS myelination and that OPCs lacking mature miRNAs fail to differentiate normally in vitro. We identified three miRNAs (miR-219, miR-138, and miR-338) that are induced 10-100x during OL differentiation; the most strongly induced of these, miR-219, is necessary and sufficient to promote OL differentiation, and partially rescues OL differentiation defects caused by total miRNA loss. miR-219 directly represses the expression of PDGFRalpha, Sox6, FoxJ3, and ZFP238 proteins, all of which normally help to promote OPC proliferation. Together, these findings show that miR-219 plays a critical role in coupling differentiation to proliferation arrest in the OL lineage, enabling the rapid transition from proliferating OPCs to myelinating OLs.


Science | 2010

Regulation of Oligodendrocyte Differentiation and Myelination

Ben Emery

Despite the importance of myelin for the rapid conduction of action potentials, the molecular bases of oligodendrocyte differentiation and central nervous system (CNS) myelination are still incompletely understood. Recent results have greatly advanced this understanding, identifying new transcriptional regulators of myelin gene expression, elucidating vital roles for microRNAs in controlling myelination, and clarifying the extracellular signaling mechanisms that orchestrate the development of myelin. Studies have also demonstrated an unexpected level of plasticity of myelin in the adult CNS. These recent advances provide new insight into how remyelination may be stimulated in demyelinating disorders such as multiple sclerosis.


Science | 2014

Motor skill learning requires active central myelination

Ian McKenzie; David Ohayon; Huiliang Li; Joana Paes de Faria; Ben Emery; Koujiro Tohyama; William D. Richardson

Myelin-forming oligodendrocytes (OLs) are formed continuously in the healthy adult brain. In this work, we study the function of these late-forming cells and the myelin they produce. Learning a new motor skill (such as juggling) alters the structure of the brain’s white matter, which contains many OLs, suggesting that late-born OLs might contribute to motor learning. Consistent with this idea, we show that production of newly formed OLs is briefly accelerated in mice that learn a new skill (running on a “complex wheel” with irregularly spaced rungs). By genetically manipulating the transcription factor myelin regulatory factor in OL precursors, we blocked production of new OLs during adulthood without affecting preexisting OLs or myelin. This prevented the mice from mastering the complex wheel. Thus, generation of new OLs and myelin is important for learning motor skills. Mice need myelinating cells in the brain to master an unpredictable motor task. [Also see Perspective by Long and Corfas] Learning requires the brain to change We may be leveraging change in our brains more than we have thought. Ohayon et al. knocked out cells responsible for laying down insulating myelin along neuronal axons in the brains of otherwise normal adult mice (see the Perspective by Long and Corfas). The mice lacking the myelin-forming cells were less able to learn a new motor skill involving running on a wheel with unevenly spaced bars. Although we may not run on a wheel, when trying to master new motor skills such as juggling, we too may well rely on similar myelin-producing cells. Science, this issue p. 318; see also p. 298


Nature Medicine | 2002

LIF receptor signaling limits immune-mediated demyelination by enhancing oligodendrocyte survival

Helmut Butzkueven; Jian Guo Zhang; Merja Soilu-Hänninen; Hubertus Hochrein; Fiona Chionh; Kylie Shipham; Ben Emery; Ann M. Turnley; Steven Petratos; Matthias Ernst; Perry F. Bartlett; Trevor J. Kilpatrick

Multiple sclerosis (MS) is a disabling inflammatory demyelinating disease of the central nervous system (CNS) that primarily affects young adults. Available therapies can inhibit the inflammatory component of MS but do not suppress progressive clinical disability. An alternative approach would be to inhibit mechanisms that drive the neuropathology of MS, which often includes the death of oligodendrocytes, the cells responsible for myelinating the CNS. Identification of molecular mechanisms that mediate the stress response of oligodendrocytes to optimize their survival would serve this need. This study shows that the neurotrophic cytokine leukemia inhibitory factor (LIF) directly prevents oligodendrocyte death in animal models of MS. We also demonstrate that this therapeutic effect complements endogenous LIF receptor signaling, which already serves to limit oligodendrocyte loss during immune attack. Our results provide a novel approach for the treatment of MS.


Cell | 2009

Myelin Gene Regulatory Factor Is a Critical Transcriptional Regulator Required for CNS Myelination

Ben Emery; Dritan Agalliu; John D. Cahoy; Trent A. Watkins; Jason C. Dugas; Sara B. Mulinyawe; Adilijan Ibrahim; Keith L. Ligon; David H. Rowitch; Ben A. Barres

The transcriptional control of CNS myelin gene expression is poorly understood. Here we identify gene model 98, which we have named myelin gene regulatory factor (MRF), as a transcriptional regulator required for CNS myelination. Within the CNS, MRF is specifically expressed by postmitotic oligodendrocytes. MRF is a nuclear protein containing an evolutionarily conserved DNA binding domain homologous to a yeast transcription factor. Knockdown of MRF in oligodendrocytes by RNA interference prevents expression of most CNS myelin genes; conversely, overexpression of MRF within cultured oligodendrocyte progenitors or the chick spinal cord promotes expression of myelin genes. In mice lacking MRF within the oligodendrocyte lineage, premyelinating oligodendrocytes are generated but display severe deficits in myelin gene expression and fail to myelinate. These mice display severe neurological abnormalities and die because of seizures during the third postnatal week. These findings establish MRF as a critical transcriptional regulator essential for oligodendrocyte maturation and CNS myelination.


Neuron | 2008

Distinct Stages of Myelination Regulated by γ-Secretase and Astrocytes in a Rapidly Myelinating CNS Coculture System

Trent A. Watkins; Ben Emery; Sara B. Mulinyawe; Ben A. Barres

Mechanistic studies of CNS myelination have been hindered by the lack of a rapidly myelinating culture system. Here, we describe a versatile CNS coculture method that allows time-lapse microscopy and molecular analysis of distinct stages of myelination. Employing a culture architecture of reaggregated neurons fosters extension of dense beds of axons from purified retinal ganglion cells. Seeding of oligodendrocyte precursor cells on these axons results in differentiation and ensheathment in as few as 3 days, with generation of compact myelin within 6 days. This technique enabled (1) the demonstration that oligodendrocytes initiate new myelin segments only during a brief window early in their differentiation, (2) identification of a contribution of astrocytes to the rate of myelin wrapping, and (3) molecular dissection of the role of oligodendrocyte gamma-secretase activity in controlling the ensheathment of axons. These insights illustrate the value of this defined system for investigating multiple aspects of CNS myelination.


Neuroscience | 2014

Mechanisms Regulating the Development of Oligodendrocytes and Central Nervous System Myelin

Stanislaw Mitew; Curtis M. Hay; Haley Peckham; Junhua Xiao; Matthias Koenning; Ben Emery

Oligodendrocytes and the myelin they produce are a remarkable vertebrate specialization that enables rapid and efficient nerve conduction within the central nervous system. The generation of myelin during development involves a finely-tuned pathway of oligodendrocyte precursor specification, proliferation and migration followed by differentiation and the subsequent myelination of appropriate axons. In this review we summarize the molecular mechanisms known to regulate each of these processes, including the extracellular ligands that promote or inhibit development of the oligodendrocyte lineage, the intracellular pathways they signal through and the key transcription factors that mediate their effects. Many of these regulatory mechanisms have recurring roles in regulating several transitions during oligodendrocyte development, highlighting their importance. It is also highly likely that many of these developmental mechanisms will also be involved in myelin repair in human neurological disease.


PLOS Biology | 2013

MYRF Is a Membrane-Associated Transcription Factor That Autoproteolytically Cleaves to Directly Activate Myelin Genes

Helena Bujalka; Matthias Koenning; Stacey Jackson; Victoria M. Perreau; Bernard J. Pope; Curtis M. Hay; Stanlislaw Mitew; Andrew F. Hill; Q. Richard Lu; Michael Wegner; Rajini Srinivasan; John Svaren; Melanie Willingham; Ben A. Barres; Ben Emery

Oligodendrocyte development and myelination rely on an unusual membrane-associated transcription factor that shares functional domains with bacteriophage proteins.


The Journal of Neuroscience | 2012

Myelin Gene Regulatory Factor Is Required for Maintenance of Myelin and Mature Oligodendrocyte Identity in the Adult CNS

Matthias Koenning; Stacey Jackson; Curtis M. Hay; Clare Faux; Trevor J. Kilpatrick; Melanie Willingham; Ben Emery

Although the transcription factors required for the generation of oligodendrocytes and CNS myelination during development have been relatively well established, it is not known whether continued expression of the same factors is required for the maintenance of myelin in the adult. Here, we use an inducible conditional knock-out strategy to investigate whether continued oligodendrocyte expression of the recently identified transcription factor myelin gene regulatory factor (MRF) is required to maintain the integrity of myelin in the adult CNS. Genetic ablation of MRF in mature oligodendrocytes within the adult CNS resulted in a delayed but severe CNS demyelination, with clinical symptoms beginning at 5 weeks and peaking at 8 weeks after ablation of MRF. This demyelination was accompanied by microglial/macrophage infiltration and axonal damage. Transcripts for myelin genes, such as proteolipid protein, MAG, MBP, and myelin oligodendrocyte glycoprotein, were rapidly downregulated after ablation of MRF, indicating an ongoing requirement for MRF in the expression of these genes. Subsequently, a proportion of the recombined oligodendrocytes undergo apoptosis over a period of weeks. Surviving oligodendrocytes gradually lose the expression of mature markers such as CC1 antigen and their association with myelin, without reexpressing oligodendrocyte progenitor markers or reentering the cell cycle. These results demonstrate that ongoing expression of MRF within the adult CNS is critical to maintain mature oligodendrocyte identity and the integrity of CNS myelin.

Collaboration


Dive into the Ben Emery's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Marriott

Royal Melbourne Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge