Ben Felts
San Diego State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ben Felts.
PLOS Biology | 2006
Florent E. Angly; Ben Felts; Mya Breitbart; Peter Salamon; Robert Edwards; Craig H. Carlson; Amy M. Chan; Matthew Haynes; Scott Kelley; Hong-Hong Liu; Joseph M. Mahaffy; Jennifer Mueller; Jim Nulton; Robert Olson; Rachel Parsons; Steve Rayhawk; Curtis A. Suttle; Forest Rohwer
Viruses are the most common biological entities in the marine environment. There has not been a global survey of these viruses, and consequently, it is not known what types of viruses are in Earths oceans or how they are distributed. Metagenomic analyses of 184 viral assemblages collected over a decade and representing 68 sites in four major oceanic regions showed that most of the viral sequences were not similar to those in the current databases. There was a distinct “marine-ness” quality to the viral assemblages. Global diversity was very high, presumably several hundred thousand of species, and regional richness varied on a North-South latitudinal gradient. The marine regions had different assemblages of viruses. Cyanophages and a newly discovered clade of single-stranded DNA phages dominated the Sargasso Sea sample, whereas prophage-like sequences were most common in the Arctic. However most viral species were found to be widespread. With a majority of shared species between oceanic regions, most of the differences between viral assemblages seemed to be explained by variation in the occurrence of the most common viral species and not by exclusion of different viral genomes. These results support the idea that viruses are widely dispersed and that local environmental conditions enrich for certain viral types through selective pressure.
Journal of Bacteriology | 2003
Mya Breitbart; Ian Hewson; Ben Felts; Joseph M. Mahaffy; James Nulton; Peter Salamon; Forest Rohwer
Here we present the first metagenomic analyses of an uncultured viral community from human feces, using partial shotgun sequencing. Most of the sequences were unrelated to anything previously reported. The recognizable viruses were mostly siphophages, and the community contained an estimated 1,200 viral genotypes.
Applied and Environmental Microbiology | 2007
Noah Fierer; Mya Breitbart; James Nulton; Peter Salamon; Catherine A. Lozupone; Ryan T. Jones; Michael S. Robeson; Robert Edwards; Ben Felts; Steve Rayhawk; Rob Knight; Forest Rohwer; Robert B. Jackson
ABSTRACT Recent studies have highlighted the surprising richness of soil bacterial communities; however, bacteria are not the only microorganisms found in soil. To our knowledge, no study has compared the diversities of the four major microbial taxa, i.e., bacteria, archaea, fungi, and viruses, from an individual soil sample. We used metagenomic and small-subunit RNA-based sequence analysis techniques to compare the estimated richness and evenness of these groups in prairie, desert, and rainforest soils. By grouping sequences at the 97% sequence similarity level (an operational taxonomic unit [OTU]), we found that the archaeal and fungal communities were consistently less even than the bacterial communities. Although total richness levels are difficult to estimate with a high degree of certainty, the estimated number of unique archaeal or fungal OTUs appears to rival or exceed the number of unique bacterial OTUs in each of the collected soils. In this first study to comprehensively survey viral communities using a metagenomic approach, we found that soil viruses are taxonomically diverse and distinct from the communities of viruses found in other environments that have been surveyed using a similar approach. Within each of the four microbial groups, we observed minimal taxonomic overlap between sites, suggesting that soil archaea, bacteria, fungi, and viruses are globally as well as locally diverse.
The ISME Journal | 2010
Beltran Rodriguez-Brito; Linlin Li; Linda Wegley; Mike Furlan; Florent E. Angly; Mya Breitbart; John Buchanan; Christelle Desnues; Elizabeth A. Dinsdale; Robert Edwards; Ben Felts; Matthew Haynes; Hong Liu; David A. Lipson; Joseph M. Mahaffy; Anna Belen Martin-Cuadrado; Alex Mira; Jim Nulton; Lejla Pašić; Steve Rayhawk; Jennifer Rodriguez-Mueller; Francisco Rodriguez-Valera; Peter Salamon; Shailaja Srinagesh; Tron Frede Thingstad; Tuong Tran; Rebecca Vega Thurber; Dana Willner; Merry Youle; Forest Rohwer
The species composition and metabolic potential of microbial and viral communities are predictable and stable for most ecosystems. This apparent stability contradicts theoretical models as well as the viral–microbial dynamics observed in simple ecosystems, both of which show Kill-the-Winner behavior causing cycling of the dominant taxa. Microbial and viral metagenomes were obtained from four human-controlled aquatic environments at various time points separated by one day to >1 year. These environments were maintained within narrow geochemical bounds and had characteristic species composition and metabolic potentials at all time points. However, underlying this stability were rapid changes at the fine-grained level of viral genotypes and microbial strains. These results suggest a model wherein functionally redundant microbial and viral taxa are cycling at the level of viral genotypes and virus-sensitive microbial strains. Microbial taxa, viral taxa, and metabolic function persist over time in stable ecosystems and both communities fluctuate in a Kill-the-Winner manner at the level of viral genotypes and microbial strains.
Proceedings of the Royal Society of London B: Biological Sciences | 2004
Mya Breitbart; Ben Felts; Scott T. Kelley; Joseph M. Mahaffy; James Nulton; Peter Salamon; Forest Rohwer
Viruses, most of which are phage, are extremely abundant in marine sediments, yet almost nothing is known about their identity or diversity. We present the metagenomic analysis of an uncultured near–shore marine–sediment viral community. Three–quarters of the sequences in the sample were not related to anything previously reported. Among the sequences that could be identified, the majority belonged to double–stranded DNA phage. Temperate phage were more common than lytic phage, suggesting that lysogeny may be an important lifestyle for sediment viruses. Comparisons between the sediment sample and previously sequenced seawater viral communities showed that certain phage phylogenetic groups were abundant in all marine viral communities, while other phage groups were under–represented or absent. This ‘marineness’ suggests that marine phage are derived from a common set of ancestors. Several independent mathematical models, based on the distribution of overlapping shotgun sequence fragments from the library, were used to show that the diversity of the viral community was extremely high, with at least 104 viral genotypes per kilogram of sediment and a Shannon index greater than 9 nats. Based on these observations we propose that marine–sediment viral communities are one of the largest unexplored reservoirs of sequence space on the planet.
Research in Microbiology | 2008
Mya Breitbart; Matthew Haynes; Scott T. Kelley; Florent E. Angly; Robert Edwards; Ben Felts; Joseph M. Mahaffy; Jennifer Mueller; James Nulton; Steve Rayhawk; Beltran Rodriguez-Brito; Peter Salamon; Forest Rohwer
Metagenomic sequencing of DNA viruses from the feces of a healthy week-old infant revealed a viral community with extremely low diversity. The identifiable sequences were dominated by phages, which likely influence the diversity and abundance of co-occurring microbes. The most abundant fecal viral sequences did not originate from breast milk or formula, suggesting a non-dietary initial source of viruses. Certain sequences were stable in the infants gut over the first 3 months of life, but microarray experiments demonstrated that the overall viral community composition changed dramatically between 1 and 2 weeks of age.
Nature Communications | 2014
Bas E. Dutilh; Noriko Cassman; Katelyn McNair; Savannah E. Sanchez; Genivaldo G. Z. Silva; Lance Boling; Jeremy J. Barr; Daan R. Speth; Victor Seguritan; Ramy K. Aziz; Ben Felts; Elizabeth A. Dinsdale; John L. Mokili; Robert Edwards
Metagenomics, or sequencing of the genetic material from a complete microbial community, is a promising tool to discover novel microbes and viruses. Viral metagenomes typically contain many unknown sequences. Here we describe the discovery of a previously unidentified bacteriophage present in the majority of published human faecal metagenomes, which we refer to as crAssphage. Its ~97 kbp genome is six times more abundant in publicly available metagenomes than all other known phages together; it comprises up to 90% and 22% of all reads in virus-like particle (VLP)-derived metagenomes and total community metagenomes, respectively; and it totals 1.68% of all human faecal metagenomic sequencing reads in the public databases. The majority of crAssphage-encoded proteins match no known sequences in the database, which is why it was not detected before. Using a new co-occurrence profiling approach, we predict a Bacteroides host for this phage, consistent with Bacteroides-related protein homologues and a unique carbohydrate-binding domain encoded in the phage genome.
BMC Bioinformatics | 2005
Florent E. Angly; Beltran Rodriguez-Brito; David Bangor; Pat McNairnie; Mya Breitbart; Peter Salamon; Ben Felts; James Nulton; Joseph M. Mahaffy; Forest Rohwer
BackgroundPhages, viruses that infect prokaryotes, are the most abundant microbes in the world. A major limitation to studying these viruses is the difficulty of cultivating the appropriate prokaryotic hosts. One way around this limitation is to directly clone and sequence shotgun libraries of uncultured viral communities (i.e., metagenomic analyses). PHACCS http://phage.sdsu.edu/phaccs, Phage Communities from Contig Spectrum, is an online bioinformatic tool to assess the biodiversity of uncultured viral communities. PHACCS uses the contig spectrum from shotgun DNA sequence assemblies to mathematically model the structure of viral communities and make predictions about diversity.ResultsPHACCS builds models of possible community structure using a modified Lander-Waterman algorithm to predict the underlying contig spectrum. PHACCS finds the most appropriate structure model by optimizing the model parameters until the predicted contig spectrum is as close as possible to the experimental one. This model is the basis for making estimates of uncultured viral community richness, evenness, diversity index and abundance of the most abundant genotype.ConclusionPHACCS analysis of four different environmental phage communities suggests that the power law is an important rank-abundance form to describe uncultured viral community structure. The estimates support the fact that the four phage communities were extremely diverse and that phage community biodiversity and structure may be correlated with that of their hosts.
Nature | 2016
Ben Knowles; Cynthia B. Silveira; Barbara A. Bailey; Katie L. Barott; V. A. Cantu; A. G. Cobián-Güemes; Felipe H. Coutinho; E. A. Dinsdale; Ben Felts; Kathryn A. Furby; E. E. George; Kevin T. Green; Gustavo B. Gregoracci; Andreas F. Haas; John Matthew Haggerty; E. R. Hester; Nao Hisakawa; Linda Wegley Kelly; Yan Wei Lim; Mark Little; Antoni Luque; T. McDole-Somera; K. McNair; L. S. de Oliveira; Steven D. Quistad; N. L. Robinett; Enric Sala; Peter Salamon; Savannah E. Sanchez; Stuart A. Sandin
Microbial viruses can control host abundances via density-dependent lytic predator–prey dynamics. Less clear is how temperate viruses, which coexist and replicate with their host, influence microbial communities. Here we show that virus-like particles are relatively less abundant at high host densities. This suggests suppressed lysis where established models predict lytic dynamics are favoured. Meta-analysis of published viral and microbial densities showed that this trend was widespread in diverse ecosystems ranging from soil to freshwater to human lungs. Experimental manipulations showed viral densities more consistent with temperate than lytic life cycles at increasing microbial abundance. An analysis of 24 coral reef viromes showed a relative increase in the abundance of hallmark genes encoded by temperate viruses with increased microbial abundance. Based on these four lines of evidence, we propose the Piggyback-the-Winner model wherein temperate dynamics become increasingly important in ecosystems with high microbial densities; thus ‘more microbes, fewer viruses’.
American Journal of Respiratory and Critical Care Medicine | 2014
Katrine Whiteson; Barbara A. Bailey; Megan Bergkessel; Douglas Conrad; Laurence Delhaes; Ben Felts; J. Kirk Harris; Ryan C. Hunter; Yan Wei Lim; Heather Maughan; Robert A. Quinn; Peter Salamon; James C. Sullivan; Brandie D. Wagner; Paul B. Rainey
A continuously mixed series of microbial communities inhabits various points of the respiratory tract, with community composition determined by distance from colonization sources, colonization rates, and extinction rates. Ecology and evolution theory developed in the context of biogeography is relevant to clinical microbiology and could reframe the interpretation of recent studies comparing communities from lung explant samples, sputum samples, and oropharyngeal swabs. We propose an island biogeography model of the microbial communities inhabiting different niches in human airways. Island biogeography as applied to communities separated by time and space is a useful parallel for exploring microbial colonization of healthy and diseased lungs, with the potential to inform our understanding of microbial community dynamics and the relevance of microbes detected in different sample types. In this perspective, we focus on the intermixed microbial communities inhabiting different regions of the airways of patients with cystic fibrosis.