Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ben Field is active.

Publication


Featured researches published by Ben Field.


Science | 2008

Metabolic Diversification—Independent Assembly of Operon-Like Gene Clusters in Different Plants

Ben Field; Anne Osbourn

Operons are clusters of unrelated genes with related functions that are a feature of prokaryotic genomes. Here, we report on an operon-like gene cluster in the plant Arabidopsis thaliana that is required for triterpene synthesis (the thalianol pathway). The clustered genes are coexpressed, as in bacterial operons. However, despite the resemblance to a bacterial operon, this gene cluster has been assembled from plant genes by gene duplication, neofunctionalization, and genome reorganization, rather than by horizontal gene transfer from bacteria. Furthermore, recent assembly of operon-like gene clusters for triterpene synthesis has occurred independently in divergent plant lineages (Arabidopsis and oat). Thus, selection pressure may act during the formation of certain plant metabolic pathways to drive gene clustering.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Formation of plant metabolic gene clusters within dynamic chromosomal regions

Ben Field; Anna-Sophie Fiston-Lavier; Ariane Kemen; Katrin Geisler; Hadi Quesneville; Anne Osbourn

In bacteria, genes with related functions often are grouped together in operons and are cotranscribed as a single polycistronic mRNA. In eukaryotes, functionally related genes generally are scattered across the genome. Notable exceptions include gene clusters for catabolic pathways in yeast, synthesis of secondary metabolites in filamentous fungi, and the major histocompatibility complex in animals. Until quite recently it was thought that gene clusters in plants were restricted to tandem duplicates (for example, arrays of leucine-rich repeat disease-resistance genes). However, operon-like clusters of coregulated nonhomologous genes are an emerging theme in plant biology, where they may be involved in the synthesis of certain defense compounds. These clusters are unlikely to have arisen by horizontal gene transfer, and the mechanisms behind their formation are poorly understood. Previously in thale cress (Arabidopsis thaliana) we identified an operon-like gene cluster that is required for the synthesis and modification of the triterpene thalianol. Here we characterize a second operon-like triterpene cluster (the marneral cluster) from A. thaliana, compare the features of these two clusters, and investigate the evolutionary events that have led to cluster formation. We conclude that common mechanisms are likely to underlie the assembly and control of operon-like gene clusters in plants.


Plant Physiology | 2004

Glucosinolate and Amino Acid Biosynthesis in Arabidopsis

Ben Field; Guillermo Cardon; Maria H. Traka; Johan Botterman; Guy Vancanneyt; Richard Mithen

Enzymes that catalyze the condensation of acetyl coenzyme A and 2-oxo acids are likely to be important in two distinct metabolic pathways in Arabidopsis. These are the synthesis of isopropylmalate, an intermediate of Leu biosynthesis in primary metabolism, and the synthesis of methylthioalkylmalates, intermediates of Met elongation in the synthesis of aliphatic glucosinolates (GSLs), in secondary metabolism. Four Arabidopsis genes in the ecotype Columbia potentially encode proteins that could catalyze these reactions. MAM1 and MAML are adjacent genes on chromosome 5 at the Gsl-elong locus, while MAML-3 and MAML-4 are at opposite ends of chr 1. The isopropylmalate synthase activity of each member of the MAM-like gene family was investigated by heterologous expression in an isopropylmalate synthase-null Escherichia coli mutant. Only the expression of MAML-3 restored the ability of the mutant to grow in the absence of Leu. A MAML knockout line (KO) lacked long-chain aliphatic GSLs, which were restored when the KO was transformed with a functional MAML gene. Variation in expression of MAML did not alter the total levels of Met-derived GSLs, but just the ratio of chain lengths. MAML overexpression in Columbia led to an increase in long-chain GSLs, and an increase in 3C GSLs. Moreover, plants overexpressing MAML contained at least two novel amino acids. One of these was positively identified via MS/MS as homo-Leu, while the other, with identical mass and fragmentation patterns, was likely to be homo-Ile. A MAML-4 KO did not exhibit any changes in GSL profile, but had perturbed soluble amino acid content.


New Phytologist | 2013

A metabolic gene cluster in Lotus japonicus discloses novel enzyme functions and products in triterpene biosynthesis

Afrodite Krokida; Costas Delis; Katrin Geisler; Constantine Garagounis; Daniela Tsikou; Luis M. Peña-Rodríguez; Dimitra Katsarou; Ben Field; Anne Osbourn; Kalliope K. Papadopoulou

Genes for triterpene biosynthetic pathways exist as metabolic gene clusters in oat and Arabidopsis thaliana plants. We characterized the presence of an analogous gene cluster in the model legume Lotus japonicus. In the genomic regions flanking the oxidosqualene cyclase AMY2 gene, genes for two different classes of cytochrome P450 and a gene predicted to encode a reductase were identified. Functional characterization of the cluster genes was pursued by heterologous expression in Nicotiana benthamiana. The gene expression pattern was studied under different developmental and environmental conditions. The physiological role of the gene cluster in nodulation and plant development was studied in knockdown experiments. A novel triterpene structure, dihydrolupeol, was produced by AMY2. A new plant cytochrome P450, CYP71D353, which catalyses the formation of 20-hydroxybetulinic acid in a sequential three-step oxidation of 20-hydroxylupeol was characterized. The genes within the cluster are highly co-expressed during root and nodule development, in hormone-treated plants and under various environmental stresses. A transcriptional gene silencing mechanism that appears to be involved in the regulation of the cluster genes was also revealed. A tightly co-regulated cluster of functionally related genes is involved in legume triterpene biosynthesis, with a possible role in plant development.


New Phytologist | 2011

Investigation of the potential for triterpene synthesis in rice through genome mining and metabolic engineering

Yoshishige Inagaki; Graham J. Etherington; Katrin Geisler; Ben Field; Melissa Dokarry; Kousuke Ikeda; Yukako Mutsukado; Jo Dicks; Anne Osbourn

The first committed step in sterol biosynthesis in plants involves the cyclization of 2,3-oxidosqualene by the oxidosqualene cyclase (OSC) enzyme cycloartenol synthase. 2,3-Oxidosqualene is also a precursor for triterpene synthesis. Antimicrobial triterpenes are common in dicots, but seldom found in monocots, with the notable exception of oat. Here, through genome mining and metabolic engineering, we investigate the potential for triterpene synthesis in rice. The first two steps in the oat triterpene pathway are catalysed by a divergent OSC (AsbAS1) and a cytochrome P450 (CYP51). The genes for these enzymes form part of a metabolic gene cluster. To investigate the origins of triterpene synthesis in monocots, we analysed systematically the OSC and CYP51 gene families in rice. We also engineered rice for elevated triterpene content. We discovered a total of 12 OSC and 12 CYP51 genes in rice and uncovered key events in the evolution of triterpene synthesis. We further showed that the expression of AsbAS1 in rice leads to the accumulation of the simple triterpene, β-amyrin. These findings provide new insights into the evolution of triterpene synthesis in monocots and open up opportunities for metabolic engineering for disease resistance in rice and other cereals.


Plant Molecular Biology | 2006

Expression of a Brassica isopropylmalate synthase gene in Arabidopsis perturbs both glucosinolate and amino acid metabolism.

Ben Field; Caroline S.M. Furniss; Andrew P. Wilkinson; Richard Mithen

Isopropylmalate synthase (IPMS) is a key enzyme in the biosynthesis of the essential amino acid leucine, and thus primary metabolism. In Arabidopsis, the functionally similar enzyme, methythiolalkylmalate synthase (MAM), is an important enzyme in the elongation of methionine prior to glucosinolate (GSL) biosynthesis, as part of secondary metabolism. We describe the cloning of an IPMS gene from Brassica, BatIMS, and its functional characterisation by heterologous expression in E. coli and Arabidopsis. Over expression of BatIMS in Arabidopsis resulted in plants with an aberrant phenotype, reminiscent of mutants in GSL biosynthesis. Metabolite analyses showed that these plants had both perturbed amino acid metabolism and enhanced levels of GSLs. Microarray profiling showed that BatIMS over expression caused up regulation of the genes for methionine-derived GSL biosynthesis, and down regulation of genes involved in leucine catabolism, in addition to perturbed expression of genes involved in auxin and ethylene metabolism. The results illustrate the cross talk that can occur between primary and secondary metabolism within transgenic plants.


Nucleic Acids Research | 2016

Delineation of metabolic gene clusters in plant genomes by chromatin signatures

Nan Yu; Hans-Wilhelm Nützmann; James T. MacDonald; Ben Moore; Ben Field; Souha Berriri; Martin Trick; Susan J. Rosser; S. Vinod Kumar; Paul S. Freemont; Anne Osbourn

Plants are a tremendous source of diverse chemicals, including many natural product-derived drugs. It has recently become apparent that the genes for the biosynthesis of numerous different types of plant natural products are organized as metabolic gene clusters, thereby unveiling a highly unusual form of plant genome architecture and offering novel avenues for discovery and exploitation of plant specialized metabolism. Here we show that these clustered pathways are characterized by distinct chromatin signatures of histone 3 lysine trimethylation (H3K27me3) and histone 2 variant H2A.Z, associated with cluster repression and activation, respectively, and represent discrete windows of co-regulation in the genome. We further demonstrate that knowledge of these chromatin signatures along with chromatin mutants can be used to mine genomes for cluster discovery. The roles of H3K27me3 and H2A.Z in repression and activation of single genes in plants are well known. However, our discovery of highly localized operon-like co-regulated regions of chromatin modification is unprecedented in plants. Our findings raise intriguing parallels with groups of physically linked multi-gene complexes in animals and with clustered pathways for specialized metabolism in filamentous fungi.


Methods in Enzymology | 2012

Finding and Analyzing Plant Metabolic Gene Clusters

Anne Osbourn; Kalliopi Papadopoulou; Xiaoquan Qi; Ben Field; Eva Wegel

Plants produce an array of diverse secondary metabolites with important ecological functions, providing protection against pests, diseases, and abiotic stresses. Secondary metabolites are also a rich source of bioactive compounds for drug and agrochemical development. Despite the importance of these compounds, the metabolic diversity of plants remains largely unexploited, primarily due to the problems associated with mining large and complex genomes. It has recently emerged that genes for the synthesis of multiple major classes of plant-derived secondary metabolites (benzoxinones, diterpenes, triterpenes, and cyanogenic glycosides) are organized in clusters reminiscent of the metabolic gene clusters found in microbes. Many more secondary metabolic clusters are likely to emerge as the body of sequence information available for plants continues to grow, accelerated by high-throughput sequencing. Here, we describe approaches for the identification of secondary metabolic gene clusters in plants through forward and reverse genetics, map-based cloning, and genome mining and give examples of methods used for the analysis and functional confirmation of new clusters.


Molecular Plant Pathology | 2018

Guanosine tetraphosphate modulates salicylic acid signalling and the resistance of Arabidopsis thaliana to Turnip mosaic virus

Hela Abdelkefi; Matteo Sugliani; Hang Ke; Seddik Harchouni; Ludivine Soubigou-Taconnat; Sylvie Citerne; Grégory Mouille; H. Fakhfakh; Christophe Robaglia; Ben Field

Chloroplasts can act as key players in the perception and acclimatization of plants to incoming environmental signals. A growing body of evidence indicates that chloroplasts play a critical role in plant immunity. Chloroplast function can be regulated by the nucleotides guanosine tetraphosphate and pentaphosphate [(p)ppGpp]. In plants, (p)ppGpp levels increase in response to abiotic stress and to plant hormones which are involved in abiotic and biotic stress signalling. In this study, we analysed the transcriptome of Arabidopsis plants that over-accumulate (p)ppGpp, and unexpectedly found a decrease in the levels of a broad range of transcripts for plant defence and immunity. To determine whether (p)ppGpp is involved in the modulation of plant immunity, we analysed the susceptibility of plants with different levels of (p)ppGpp to Turnip mosaic virus (TuMV) carrying a green fluorescent protein (GFP) reporter. We found that (p)ppGpp accumulation was associated with increased susceptibility to TuMV and reduced levels of the defence hormone salicylic acid (SA). In contrast, plants with lower (p)ppGpp levels showed reduced susceptibility to TuMV, and this was associated with the precocious up-regulation of defence-related genes and increased SA content. We have therefore demonstrated a new link between (p)ppGpp metabolism and plant immunity in Arabidopsis.


Biotechnology for Biofuels | 2018

AC-202, a highly effective fluorophore for the visualization of lipid droplets in green algae and diatoms

Seddik Harchouni; Ben Field; Benoît Menand

BackgroundLipid-specific live cell dyes are an important tool for the study of algal lipid metabolism, the monitoring of lipid production, and the identification of algal strains with high lipid yields. Nile Red and BODIPY have emerged as the principal dyes for these purposes. However, they suffer from a number of shortcomings including for specificity, penetration, interference from chlorophyll autofluorescence, and incompatibility with widely used genetically encoded reporters in the green and blue regions of the spectrum such as the green fluorescent protein and the red fluorescent protein.ResultsWe tested a new blue fluorescent dye, AC-202, in both the green algae Chlamydomonas reinhardtii and the pennate diatom Phaeodactylum tricornutum. We show that AC-202 is effective in both algae and that after minimal sample preparation, it can label lipid droplets induced by nitrogen starvation or by inhibitors of the TOR (target of rapamycin) kinase. We found that AC-202 benefits from a low background signal and is therefore more sensitive than BODIPY for semiquantitative in vivo fluorescence measurements. Finally, a co-staining experiment indicated that AC-202 can be used for multicolor imaging in combination with both red and green fluorophores.ConclusionsAC-202 is an alternative and highly effective fluorophore for algal research that resolves drawbacks encountered with other neutral lipid dyes. AC-202 can be used to rapidly and sensitively visualize lipid droplets, and will contribute to the identification of metabolic and signaling pathways involved in lipid droplet formation, monitoring lipid production, and in the development of screens for algal strains suitable for biofuel production.

Collaboration


Dive into the Ben Field's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katrin Geisler

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benoît Menand

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Ben Moore

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge