Ben J. C. Cornelissen
University of Amsterdam
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ben J. C. Cornelissen.
PLOS Pathogens | 2008
Petra M. Houterman; Ben J. C. Cornelissen; Martijn Rep
The innate immune system of plants consists of two layers. The first layer, called basal resistance, governs recognition of conserved microbial molecules and fends off most attempted invasions. The second layer is based on Resistance (R) genes that mediate recognition of effectors, proteins secreted by pathogens to suppress or evade basal resistance. Here, we show that a plant-pathogenic fungus secretes an effector that can both trigger and suppress R gene-based immunity. This effector, Avr1, is secreted by the xylem-invading fungus Fusarium oxysporum f.sp. lycopersici (Fol) and triggers disease resistance when the host plant, tomato, carries a matching R gene (I or I-1). At the same time, Avr1 suppresses the protective effect of two other R genes, I-2 and I-3. Based on these observations, we tentatively reconstruct the evolutionary arms race that has taken place between tomato R genes and effectors of Fol. This molecular analysis has revealed a hitherto unpredicted strategy for durable disease control based on resistance gene combinations.
Journal of General Virology | 1988
Marianne J. Huisman; Huub J. M. Linthorst; John F. Bol; Ben J. C. Cornelissen
Double-stranded cDNA of potato virus X (PVX) genomic RNA has been cloned and sequenced. The sequence [6435 nucleotides excluding the poly(A) tract] revealed five open reading frames (ORFs) which were numbered one to five starting at the 5 terminus of the RNA. They encoded proteins of Mr 165588 (166K), 24622 (25K), 12324 (12K), 7595 (8K) and 25080 (coat protein), respectively. ORFs 1 and 2 were inphase coding regions. The ORF 1 product contained domains of homology with the tobacco mosaic virus 126K and 183K products. The ORF 2 and 3 products showed homologies with the barley stripe mosaic virus 58K and 14K proteins, the beet necrotic yellow vein virus 42K and 13K products and the white clover mosaic virus 26K and 13K products, respectively. The significance of these homologies with respect to putative functions of the PVX-encoded proteins are discussed.
Journal of Experimental Botany | 2008
Gerben van Ooijen; Gabriele Mayr; Mobien M. A. Kasiem; Mario Albrecht; Ben J. C. Cornelissen; Frank L. W. Takken
Resistance (R) proteins in plants are involved in pathogen recognition and subsequent activation of innate immune responses. Most resistance proteins contain a central nucleotide-binding domain. This so-called NB-ARC domain consists of three subdomains: NB, ARC1, and ARC2. The NB-ARC domain is a functional ATPase domain, and its nucleotide-binding state is proposed to regulate activity of the R protein. A highly conserved methionine-histidine-aspartate (MHD) motif is present at the carboxy-terminus of ARC2. An extensive mutational analysis of the MHD motif in the R proteins I-2 and Mi-1 is reported. Several novel autoactivating mutations of the MHD invariant histidine and conserved aspartate were identified. The combination of MHD mutants with autoactivating hydrolysis mutants in the NB subdomain showed that the autoactivation phenotypes are not additive. This finding indicates an important regulatory role for the MHD motif in the control of R protein activity. To explain these observations, a three-dimensional model of the NB-ARC domain of I-2 was built, based on the APAF-1 template structure. The model was used to identify residues important for I-2 function. Substitution of the selected residues resulted in the expected distinct phenotypes. Based on the model, it is proposed that the MHD motif fulfils the same function as the sensor II motif found in AAA+ proteins (ATPases associated with diverse cellular activities)-co-ordination of the nucleotide and control of subdomain interactions. The presented 3D model provides a framework for the formulation of hypotheses on how mutations in the NB-ARC exert their effects.
Molecular Plant-microbe Interactions | 2005
Martijn Rep; Michiel Meijer; Petra M. Houterman; H.C. van der Does; Ben J. C. Cornelissen
I-3-Mediated resistance of tomato against Fusarium wilt disease caused by Fusarium oxysporum f. sp. lycopersici depends on Six1, a protein that is secreted by the fungus during colonization of the xylem. Among natural isolates of F. oxysporum f. sp. lycopersici are several that are virulent on a tomato line carrying only the I-3 resistance gene. However, evasion of I-3-mediated resistance by these isolates is not correlated with mutation of the SIX1 gene. Moreover, the SIX1 gene of an I-3-virulent isolate was shown to be fully functional in that i) the gene product is secreted in xylem sap, ii) deletion leads to a further increase in virulence on the I-3 line as well as reduced virulence on susceptible lines, and iii) the gene confers full avirulence on the I-3 line when transferred to another genetic background. Remarkably, all I-3-virulent isolates were of race 1, suggesting a link between the presence of AVR1 and evasion of I-3-mediated resistance.
FEBS Letters | 1989
Frank Van Der Wilk; Marianne J. Huisman; Ben J. C. Cornelissen; Harm Huttinga; Rob Goldbach
The nucleotide sequence of the genomic RNA of potato leafroll virus was determined and its genetic organization deduced. The RNA is 5882 nucleotides long and contains 6 open reading frames (ORFs) encoding proteins of 70, 70, 56, 28, 23 and 17 kDa. The putative genes for the coat protein (23 kDa) and the RNA‐dependent RNA polymerase (70 kDa) were identified by interviral amino acid sequence homologies. For expression of the different ORFS, translational frameshift and readthrough events are proposed.
Environmental Microbiology | 2008
H.C. van der Does; Bart Lievens; Loes Claes; Petra M. Houterman; Ben J. C. Cornelissen; Martijn Rep
Fusarium oxysporum is an asexual fungus that inhabits soils throughout the world. As a species, F. oxysporum can infect a very broad range of plants and cause wilt or root rot disease. Single isolates of F. oxysporum, however, usually infect one or a few plant species only. They have therefore been grouped into formae speciales (f.sp.) based on host specificity. Isolates able to cause tomato wilt (f.sp. lycopersici) do not have a single common ancestor within the F. oxysporum species complex. Here we show that, despite their polyphyletic origin, isolates belonging to f.sp. lycopersici all contain an identical genomic region of at least 8 kb that is absent in other formae speciales and non-pathogenic isolates, and comprises the genes SIX1, SIX2 and SHH1. In addition, SIX3, which lies elsewhere on the same chromosome, is also unique for f.sp. lycopersici. SIX1 encodes a virulence factor towards tomato, and the Six1, Six2 and Six3 proteins are secreted in xylem during colonization of tomato plants. We speculate that these genes may be part of a larger, dispensable region of the genome that confers the ability to cause tomato wilt and has spread among clonal lines of F. oxysporum through horizontal gene transfer. Our findings also have practical implications for the detection and identification of f.sp. lycopersici.
Genome Biology | 2009
Caroline B. Michielse; Ringo van Wijk; Linda Reijnen; Ben J. C. Cornelissen; Martijn Rep
BackgroundFusarium oxysporum f. sp. lycopersici is the causal agent of vascular wilt disease in tomato. In order to gain more insight into the molecular processes in F. oxysporum necessary for pathogenesis and to uncover the genes involved, we used Agrobacterium-mediated insertional mutagenesis to generate 10,290 transformants and screened the transformants for loss or reduction of pathogenicity.ResultsThis led to the identification of 106 pathogenicity mutants. Southern analysis revealed that the average T-DNA insertion is 1.4 and that 66% of the mutants carry a single T-DNA. Using TAIL-PCR, chromosomal T-DNA flanking regions were isolated and 111 potential pathogenicity genes were identified.ConclusionsFunctional categorization of the potential pathogenicity genes indicates that certain cellular processes, such as amino acid and lipid metabolism, cell wall remodeling, protein translocation and protein degradation, seem to be important for full pathogenicity of F. oxysporum. Several known pathogenicity genes were identified, such as those encoding chitin synthase V, developmental regulator FlbA and phosphomannose isomerase. In addition, complementation and gene knock-out experiments confirmed that a glycosylphosphatidylinositol-anchored protein, thought to be involved in cell wall integrity, a transcriptional regulator, a protein with unknown function and peroxisome biogenesis are required for full pathogenicity of F. oxysporum.
Fungal Genetics and Biology | 2008
H.C. van der Does; Roselinde G.E. Duyvesteijn; P.M. Goltstein; C.C.N. van Schie; Erik M. M. Manders; Ben J. C. Cornelissen; Martijn Rep
Fusarium oxysporum is an asexual, soil inhabiting fungus that comprises many different formae speciales, each pathogenic towards a different host plant. In absence of a suitable host all F. oxysporum isolates appear to have a very similar lifestyle, feeding on plant debris and colonizing the rhizosphere of living plants. Upon infection F. oxysporum switches from a saprophytic to an infectious lifestyle, which probably includes the reprogramming of gene expression. In this work we show that the expression of the known effector gene SIX1 of F. oxysporum f. sp. lycopersici is strongly upregulated during colonization of the host plant. Using GFP (green fluorescent protein) as reporter, we show that induction of SIX1 expression starts immediately upon penetration of the root cortex. Induction requires living plant cells, but is not host specific and does not depend on morphological features of roots, since plant cells in culture can also induce SIX1 expression. Taken together, F. oxysporum seems to be able to distinguish between living and dead plant material, preventing unnecessary switches from a saprophytic to an infectious lifestyle.
Current Genetics | 2004
Frank L. W. Takken; Ringo van Wijk; Caroline B. Michielse; Petra M. Houterman; Arthur F. J. Ram; Ben J. C. Cornelissen
Abstract Bacterial artificial chromosomes (BACs) are widely used for the construction of physical maps, positional-cloning and whole-genome sequencing strategies. Unfortunately, their use for functional genomics is limited, as currently there is no efficient method to use BACs directly for complementation. We describe a novel strategy for one-step conversion of any BAC into a binary BAC (BIBAC). Using Agrobacterium tumefaciens, these BIBACs can be efficiently transformed to virtually all organisms, including plants, fungi, yeasts and human cells. As the strategy is based on in vivo recombineering and does not depend on restriction sites, it is applicable to any vector. To show the feasibility of the method five BACs, containing 0–75xa0kb of fungal DNA, were converted into BIBACs. These were subsequently transformed to the plant pathogenic fungus Fusarium oxysporum f.sp. lycopersici and to Aspergillus awamori, a filamentous fungus often used for large-scale protein production. Molecular characterisation of the transformants showed that the BIBACs were efficiently transferred to the fungi and stably integrated into their genomes.
FEBS Letters | 2003
Martijn Rep; Henk L. Dekker; J.H. Vossen; Albert D. de Boer; Petra M. Houterman; Chris G. de Koster; Ben J. C. Cornelissen
The coding sequence of a major xylem sap protein of tomato was identified with the aid of mass spectrometry. The protein, XSP10, represents a novel family of extracellular plant proteins with structural similarity to plant lipid transfer proteins. The XSP10 gene is constitutively expressed in roots and lower stems. The decline of XSP10 protein levels in tomato infected with a fungal vascular pathogen may reflect breakdown or modification by the pathogen.