Ben J. E. Raveney
University of Bristol
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ben J. E. Raveney.
Journal of Autoimmunity | 2008
Emma C. Kerr; Ben J. E. Raveney; David A. Copland; Andrew D. Dick; Lindsay B. Nicholson
Experimental autoimmune uveoretinitis (EAU) is an animal model for human intraocular inflammatory disease. EAU is induced in B10.RIII mice by immunization with RBP-3 161-180 peptide and intraperitoneal pertussis toxin and is mediated by CD4(+) T cells that generate a clinically monophasic disease peaking approximately 2 weeks post-immunization. Collagenase digestion of retinal tissue allowed the quantification and characterization of leukocytes in the inflamed retina during disease progression. Using this method we identified three stages of disease. Initially there is a prodromal phase where we found significant changes in the number of leukocytes in the eye as early as 5 days post-immunization. This effect was, in part, non-antigen specific as a small increase in retinal leukocytes was also observed following immunization with OVA peptide. Following the prodrome there is a primary peak of infiltration including both CD4(+) T cells and CD11b(+) cells. This coincides with an early influx of neutrophils and is associated with a peak in IL-17-producing T cells. The neutrophils in the eye are CD11b(+) and Gr1(+) but can be distinguished from other myeloid cells by their high expression of Ly6G. The remaining CD11b(+)Gr1(+) cells can suppress proliferation and are analogous to myeloid derived suppressor cells which are found in tumors. The inflamed eye also contains a considerable proportion of FoxP3(+) regulatory cells. Following peak disease, the retina does not return to its pre-disease phenotype. Instead, fluctuations in infiltrating leukocyte numbers and changes to their relative composition continue, indicating that clinical recovery does not equate to the restoration of a normal retinal leukocyte population.
Investigative Ophthalmology & Visual Science | 2008
David A. Copland; Michael S. Wertheim; W. John Armitage; Lindsay B. Nicholson; Ben J. E. Raveney; Andrew D. Dick
PURPOSE EAU is an established preclinical model for assessment of immunotherapeutic efficacy toward translation of therapy for posterior uveitis. Reliable screening of clinical features that correlate with underlying retinal changes and damage has not been possible to date. This study was undertaken to describe, validate, and correlate topical endoscopic fundus imaging (TEFI) with histologic features of murine experimental autoimmune uveoretinitis (EAU), with the intent of generating a rapid noninvasive panretinal assessment of ocular inflammation. METHODS EAU was induced in B10.RIII mice by immunization with the peptide RBP-3(161-180). The clinical disease course (days 0-63) was monitored and documented using TEFI. Disease severity and pathology were confirmed at various time points by histologic assessment. The composition of the cell infiltrate was also examined and enumerated by flow cytometry. RESULTS TEFI demonstrated the hallmark features of EAU, paralleling many of the clinical features of human uveitis, and closely aligned with underlying histologic changes, the severity of which correlated significantly with the number of infiltrating retinal leukocytes. Leukocytic infiltration occurred before manifestation of clinical disease and clinically fulminant disease, as well as cell infiltrate, resolved faster than histologic scores. During the resolution phase, neither the clinical appearance nor number of infiltrating retinal leukocytes returned to predisease levels. CONCLUSIONS In EAU, there is a strong correlation between histologic severity and the number of infiltrating leukocytes into the retina. TEFI enhances the monitoring of clinical disease in a rapid and noninvasive fashion. Full assessment of preclinical immunotherapeutic efficacy requires the use of all three parameters: TEFI, histologic assessment, and flow cytometric analysis of retinal infiltrate.
Current Molecular Medicine | 2009
Lindsay B. Nicholson; Ben J. E. Raveney; Markus Munder
In chronic inflammation, across a number of quite different pathological conditions, monocytes accumulate. In autoimmune disease, these cells are widely recognised to play an inflammatory and tissue destructive role. But these cells also inhibit T cell proliferation by a range of different mechanisms that are accompanied by the depletion of specific amino acids in the local microenvironment and the downregulation of the T cell receptor zeta chain. This occurs within the pro-inflammatory environment and in the presence of Th1 (IFNgamma) and Th17 (IL-17) cytokines. In tumours, related cells are part of a population called myeloid-derived suppressor cells (MDSC) and they are associated with immunosuppression. Their depletion can lead to clinical improvement. In organ specific autoimmune disease, where such cells can be found in the spleen and in target organs, recent evidence indicates that they may play a role in limiting the T cell response to autoantigens in the target tissue. This occurs by a targeted disruption of T cell division. In this review we discuss evidence for the presence on MDSC in murine and human autoimmune disease and the mechanisms by which such cells inhibit T cell proliferation.
Journal of Immunology | 2009
Ben J. E. Raveney; David A. Copland; Andrew D. Dick; Lindsay B. Nicholson
Experimental autoimmune uveoretinitis is an autoimmune disease induced in mice, which involves the infiltration of CD11b+ macrophages and CD4+ T cells into the normally immune-privileged retina. Damage is produced in the target organ following the activation of Th1 and Th17 T cells and by the release of cytotoxic mediators such as NO by activated macrophages. The majority of immune cells infiltrating into the retina are CD11b+ myeloid cells, but, despite the presence of these APCs, relatively limited numbers of T cells are observed in the retina during the disease course. These T cells do not proliferate when leukocytes are isolated from the retina and restimulated in vitro, although they do produce both IFN-γ and IL-17. T cell proliferation was restored by depleting the myeloid cells from the cultures and furthermore those isolated myeloid cells were able to regulate the proliferation of other T cells. The ability of macrophages to regulate proliferation depends on activation by T cell-produced IFN-γ and autocrine TNF-α signaling in the myeloid cells via TNFR1. In the absence of TNFR1 signaling, relative T cell expansion in the retina is increased, indicating that regulatory myeloid cells may also act in vivo. However, TNFR1 signaling is also required for macrophages, but not T cells, to migrate into the target organ. Thus, in TNFR1 knock out mice, the amplification of autoimmunity is limited, leading to resistance to experimental autoimmune uveoretinitis induction.
Archives of Ophthalmology | 2008
Ben J. E. Raveney; David A. Copland; Lindsay B. Nicholson; Andrew D. Dick
OBJECTIVE To examine the efficacy of the immunomodulatory drug fingolimod (FTY720) as a rescue therapy for noninfectious intraocular inflammation. METHODS Experimental autoimmune uveoretinitis, the murine correlate of human uveitis, was induced in B10.RIII mice. The mice were treated with 2 oral doses of fingolimod daily, either during early ocular infiltration or following clinical onset of the disease. At subsequent times, retinal infiltrates were examined and enumerated using flow cytometry, and structural disease was assessed and scored using histology. RESULTS Fingolimod treatment, administered 2 days before disease onset, prevented inflammatory cells from infiltrating the retina, with corroborative suppression of histologic disease. A single dose of fingolimod was sufficient in clearing infiltrating leukocytes from the retina within 2 hours of treatment. Furthermore, a single dose of fingolimod administered after disease onset not only abolished retinal infiltrates but also prevented disease relapse for at least 3 weeks. CONCLUSIONS A short-term, high-dose treatment with fingolimod rapidly reduces ocular infiltrates in experimental autoimmune uveoretinitis, leading to a normal myeloid cell count within the retina. When given at the early stages of intraocular inflammation, fingolimod resolves disease. Clinical Relevance This study directly demonstrates the therapeutic potential of fingolimod and an acute rescue intervention for human noninfectious posterior-segment intraocular inflammatory disease.
PLOS ONE | 2013
Ben J. E. Raveney; Shinji Oki; Takashi Yamamura
IL-17-producing CD4+ T helper 17 (Th17) cells are pathogenic in a range of human autoimmune diseases and corresponding animal models. We now demonstrate that such T cells infiltrating the target organ during the induction of experimental autoimmune encephalomyelitis (EAE) and experimental autoimmune uveoretinitis (EAU) specifically express NR4A2. Further, we reveal a critical involvement of NR4A2 in Th17 cell functions and Th17 cell-driven autoimmune diseases. When NR4A2 expression was blocked with siRNA, full Th17 differentiation was prevented in vitro: although cells expressed the master Th17 regulator, RORγt, they expressed reduced levels of IL-23R and were unable to produce IL-17 and IL-21. Notably, Th17 differentiation in the absence of NR4A2 was restored by exogenous IL-21, indicating that NR4A2 controls full maturation of Th17 cells via autocrine IL-21 signalling. Preventing NR4A2 expression in vivo by systemic treatment with NR4A2-specific siRNA also reduced Th17 effector responses and furthermore protected mice from EAE induction. In addition, the lack of disease was associated with a reduction in autocrine IL-21 production and IL-23R expression. Similar modulation of NR4A2 expression was also effective as an intervention, reversing established autoimmune responses and ameliorating clinical disease symptoms. Thus, NR4A2 appears to control Th17 differentiation and so plays an essential role in the development of Th17-mediated autoimmune disease. As NR4A2 is also upregulated during human autoimmune disease, targeting NR4A2 may provide a new therapeutic approach in treating autoimmune disease.
Investigative Ophthalmology & Visual Science | 2008
Ben J. E. Raveney; Claire M. Richards; David A. Copland; Bronwen R. Burton; Emma C. Kerr; Lindsay B. Nicholson; Neil A. Williams; Andrew D. Dick
PURPOSE To investigate the efficacy of the B subunit of Escherichia coli heat-labile enterotoxin (EtxB) in the treatment of ocular autoimmune disease. Murine experimental autoimmune uveoretinitis (EAU) is an animal model of autoimmune posterior uveitis initiated by retinal antigen-specific Th1 and Th17 CD4(+) T cells, which activate myeloid cells, inducing retinal damage. EtxB is a potent immune modulator that ameliorates other Th1-mediated autoimmune diseases, enhancing regulatory T-cell activity. METHODS EAU was induced in B10.RIII mice by immunization with peptide hIRBP(161-180). Disease severity was measured by clinical and histologic assessment, and functional responses of macrophages (Mphis) and T cells were assessed, both in vivo and in cocultures in vitro. EtxB was administered intranasally daily for 4 days, starting either 3 days before or 3 days after EAU induction. RESULTS Preimmunization treatment with EtxB protected mice from EAU, limiting both the number and the activation status of retinal infiltrating immune cells. Treatment after EAU induction did not alter the disease course, despite suppression of IFN-gamma. Although EtxB treatment of in vitro cocultures of T cells and Mphis increased IL-10 production, EtxB treatment in vivo increased the proportion and number of IL-17-producing CD4(+) cells infiltrating the eye. CONCLUSIONS EtxB preimmunization protects mice from EAU induction by inhibiting Th1 responses, but the resultant reduction in IFN-gamma responses by EtxB does not effect infiltration or structural damage in established EAU, where Th17 responses predominate. These data highlight the critical importance of the dynamics of T-cell phenotype and infiltration during EAU when considering immunomodulatory therapy.
Immunology | 2010
Ben J. E. Raveney; David A. Copland; Claudia J. Calder; Andrew D. Dick; Lindsay B. Nicholson
Macrophages (Mϕ) are professional antigen‐presenting cells, but when they accumulate at sites of inflammation, they can inhibit T‐cell proliferation. In experimental autoimmune uveoretinitis, this limits the expansion of T cells within the target organ. To define requirements for the elaboration of this outcome, we have generated populations of Mϕin vitro that could also regulate T‐cell responses; stimulating CD4+ T‐cell activation and cytokine production, but simultaneously suppressing T‐cell proliferation. When T cells are removed from the influence of such cells, normal T‐cell responses are restored. We show that tumour necrosis factor 1 (TNFR1) signalling is a critical checkpoint in the development of such Mϕ, as TNFR1−/− Mϕ are unable to suppress T‐cell proliferation. This deficit in antigen‐presenting cells results in a lack of production of prostaglandin E2 (PGE2) and nitric oxide, which are critical effector mechanisms that inhibit T‐cell division. However, TNFR1 signalling is not required for the inhibitory function of Mϕ because we could circumvent the requirement for this receptor, by maturing Mϕ in the presence of exogenous interferon‐γ and PGE2. This produced TNFR1−/− Mϕ that inhibited T‐cell proliferation and indicates that TNFR1 delivers a signal that is necessary for the development but not the execution of this function.
Journal of Immunology | 2007
Ben J. E. Raveney; David J. Morgan
It is acknowledged that T cell interactions with mature dendritic cells (DC) lead to immunity, whereas interactions with immature DC lead to tolerance induction. Using a transgenic murine system, we have examined how DC expressing self-peptides control naive, self-reactive CD8+ T cell responses in vitro and in vivo. We have shown, for the first time, that immature DC can also stimulate productive activation of naive self-specific CD8+ T cells, which results in extensive proliferation, the expression of a highly activated cell surface phenotype, and differentiation into autoimmune CTL. Conversely, mature DC can induce abortive activation of naive CD8+ T cells, which is characterized by low-level proliferation, the expression of a partially activated cell surface phenotype which does not result in autoimmune CTL. Critically, both CD8+ T cell responses are determined by a combination of signals mediated by the DC, and that altering any one of these signals dramatically shifts the balance between autoimmunity and self-tolerance induction. We hypothesize that DC maintain the steady state of self-tolerance among self-specific CD8+ T cells in an active and dynamic manner, licensing productive immune responses against self-tissues only when required.
Immunology | 2006
Joanne M. Fraser; Claire N. Janicki; Ben J. E. Raveney; David J. Morgan
InsHA mice express the haemagglutinin (HA) protein from influenza virus A/PR/8 H1N1 (PR8) as a self antigen on pancreatic islet β cells. We have utilized these mice to investigate the ability of resting B cells expressing Kd to induce self‐tolerance among naive KdHA‐specific clone 4 CD8+ T cells. Adoptive transfer of KdHA‐peptide‐pulsed resting B cells into clone 4→InsHA recipients resulted in the activation and proliferation of clone 4 CD8+ T cells throughout the peripheral lymphoid tissues. Significantly, proliferation was not associated with the acquisition of T cell effector function; as evidenced by a lack of interferon‐γ production and the complete absence of any autoimmune pathology even after immunization of recipient mice with PR8. These data demonstrate that resting B cells pulsed with self‐epitopes can induce abortive activation of potentially self‐reactive naive CD8+ T cells resulting in their functional deletion from the peripheral T‐cell repertoire in the absence of any associated autoimmunity.