Ben J. Harrison
University of Melbourne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ben J. Harrison.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Alex Fornito; Ben J. Harrison; Andrew Zalesky; Jon S. Simons
Analyses of functional interactions between large-scale brain networks have identified two broad systems that operate in apparent competition or antagonism with each other. One system, termed the default mode network (DMN), is thought to support internally oriented processing. The other system acts as a generic external attention system (EAS) and mediates attention to exogenous stimuli. Reports that the DMN and EAS show anticorrelated activity across a range of experimental paradigms suggest that competition between these systems supports adaptive behavior. Here, we used functional MRI to characterize functional interactions between the DMN and different EAS components during performance of a recollection task known to coactivate regions of both networks. Using methods to isolate task-related, context-dependent changes in functional connectivity between these systems, we show that increased cooperation between the DMN and a specific right-lateralized frontoparietal component of the EAS is associated with more rapid memory recollection. We also show that these cooperative dynamics are facilitated by a dynamic reconfiguration of the functional architecture of the DMN into core and transitional modules, with the latter serving to enhance integration with frontoparietal regions. In particular, the right posterior cingulate cortex may act as a critical information-processing hub that provokes these context-dependent reconfigurations from an intrinsic or default state of antagonism. Our findings highlight the dynamic, context-dependent nature of large-scale brain dynamics and shed light on their contribution to individual differences in behavior.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Ben J. Harrison; Jesús Pujol; Marina López-Solà; Rosa Hernández-Ribas; Joan Deus; Hector Ortiz; Carles Soriano-Mas; Murat Yücel; Christos Pantelis; Narcís Cardoner
The notion of a “default mode of brain function” has taken on certain relevance in human neuroimaging studies and in relation to a network of lateral parietal and midline cortical regions that show prominent activity fluctuations during passive imaging states, such as rest. In this study, we perform three fMRI experiments that demonstrate consistency and specialization in the default mode network. Correlated activity fluctuations of default mode network regions are identified during (i) eyes-closed spontaneous rest, (ii) activation by moral dilemma, and (iii) deactivation by Stroop task performance. Across these imaging states, striking uniformity is shown in the basic anatomy of the default mode network, but with both tasks clearly and differentially modulating this activity compared with spontaneous fluctuations of the network at rest. Against rest, moral dilemma is further shown to evoke regionally specific activity increases of hypothesized functional relevance. Mapping spontaneous and task-related brain activity will help to constrain the meaning of the default mode network. These findings are discussed in relation to recent debate on the topic of default modes of brain function.
Psychological Medicine | 2013
Emre Bora; Ben J. Harrison; Murat Yücel; Christos Pantelis
BACKGROUND There is evidence to suggest that cognitive deficits might persist beyond the acute stages of illness in major depressive disorder (MDD). However, the findings are somewhat inconsistent across the individual studies conducted to date. Our aim was to conduct a systematic review and meta-analysis of existing studies that have examined cognition in euthymic MDD patients. METHOD Following a systematic search across several publication databases, meta-analyses were conducted for 27 empirical studies that compared euthymic adult MDD patients (895 participants) and healthy controls (997 participants) across a range of cognitive domains. The influence of demographic variables and confounding factors, including age of onset and recurrent episodes, was examined. RESULTS Compared with healthy controls, euthymic MDD patients were characterized by significantly poorer cognitive functions. However, the magnitude of observed deficits, with the exception of inhibitory control, were generally modest when late-onset cases were excuded. Late-onset cases demonstrated significantly more pronounced deficits in verbal memory, speed of information processing and some executive functions. CONCLUSIONS Cognitive deficits, especially poor response inhibition, are likely to be persistent features, at least of some forms, of adult-onset MDD. More studies are necessary to examine cognitive dysfunction in remitted psychotic, melancholic and bipolar spectrum MDD. Cognitive deficits overall appear to be more common among patients with late-onset depression, supporting the theories suggesting that possible vascular and neurodegenerative factors play a role in a substantial number of these patients.
Psychological Medicine | 2012
Emre Bora; Ben J. Harrison; Christopher G. Davey; Murat Yücel; Christos Pantelis
BACKGROUND Abnormalities in cortico-striatal-pallidal-thalamic (CSPT) circuits have been implicated in major depressive disorder (MDD). However, the robustness of these findings across studies is unclear, as is the extent to which they are influenced by demographic, clinical and pharmacological factors. METHOD With the aim of clarifying these questions, we conducted a meta-analysis to map the volumetric abnormalities that were most robustly identified in CSPT circuits of individuals with MDD. A systematic search identified 41 studies meeting our inclusion criteria. RESULTS There were significant volume reductions in prefrontal (especially orbitofrontal) and anterior cingulate cortices, and also in subcortical structures such as the caudate nucleus and putamen, with effect sizes ranging from small to moderate. The subgenual anterior cingulate and orbitofrontal cortices were significantly smaller in antidepressant-free samples compared to medicated patients. Late-life depression (LLD) tended to be associated with smaller volumes in circumscribed frontal and subcortical structures, with the most robust differences being found in thalamic volume. CONCLUSIONS Individuals with major depression demonstrate volumetric abnormalities of CSPT circuits. However, these observations may be restricted to certain subgroups, highlighting the clinical heterogeneity of the disorder. On the basis of this meta-analysis, CSPT abnormalities were more prominent in those with LLD whereas antidepressant use seemed to normalize certain cortical volumetric abnormalities.
The International Journal of Neuropsychopharmacology | 2005
Julia R. Ellis; K. Ellis; Cali F. Bartholomeusz; Ben J. Harrison; Keith Wesnes; Fiona F. Erskine; Luis Vitetta; Pradeep J. Nathan
Functional abnormalities in muscarinic and nicotinic receptors are associated with a number of disorders including Alzheimers disease and schizophrenia. While the contribution of muscarinic receptors in modulating cognition is well established in humans, the effects of nicotinic receptors and the interactions and possible synergistic effects between muscarinic and nicotinic receptors have not been well characterized in humans. The current study examined the effects of selective and simultaneous muscarinic and nicotinic receptor antagonism on a range of cognitive processes. The study was a double-blind, placebo-controlled, repeated measures design in which 12 healthy, young volunteers completed cognitive testing under four acute treatment conditions: placebo (P); mecamylamine (15 mg) (M); scopolamine (0.4 mg i.m.) (S); mecamylamine (15 mg)/scopolamine (0.4 mg i.m.) (MS). Muscarinic receptor antagonism with scopolamine resulted in deficits in working memory, declarative memory, sustained visual attention and psychomotor speed. Nicotinic antagonism with mecamylamine had no effect on any of the cognitive processes examined. Simultaneous antagonism of both muscarinic and nicotinic receptors with mecamylamine and scopolamine impaired all cognitive processes impaired by scopolamine and produced greater deficits than either muscarinic or nicotinic blockade alone, particularly on working memory, visual attention and psychomotor speed. These findings suggest that muscarinic and nicotinic receptors may interact functionally to have synergistic effects particularly on working memory and attention and suggests that therapeutic strategies targeting both receptor systems may be useful in improving selective cognitive processes in a number of disorders.
JAMA Psychiatry | 2013
Alex Fornito; Ben J. Harrison; Emmeline Goodby; Am Dean; Cinly Ooi; Pradeep J. Nathan; Belinda R. Lennox; Peter B. Jones; John Suckling; Edward T. Bullmore
IMPORTANCE Dysregulation of corticostriatal circuitry has long been thought to be critical in the etiology of psychotic disorders, although the differential roles played by dorsal and ventral systems in mediating risk for psychosis have been contentious. OBJECTIVE To use resting-state functional magnetic resonance imaging to characterize disease-related, risk-related, and symptom-related changes of corticostriatal functional circuitry in patients with first-episode psychosis and their unaffected first-degree relatives. DESIGN, SETTING, AND PARTICIPANTS This case-control cross-sectional study was conducted at a specialist early psychosis clinic, GlaxoSmithKline Clinical Unit, and magnetic resonance imaging facility. Nineteen patients with first-episode psychosis, 25 of their unaffected first-degree relatives, and 26 healthy control subjects were included in this study. MAIN OUTCOMES AND MEASURES Voxelwise statistical parametric maps testing differences in the strength of functional connectivity between 6 striatal seed regions of interest (3 caudate and 3 putamen) per hemisphere and all other brain regions. RESULTS Disease-related changes, reflecting differences between patients and control subjects, involved widespread dysregulation of corticostriatal systems characterized most prominently by a dorsal-to-ventral gradient of hypoconnectivity to hyperconnectivity between striatal and prefrontal regions. A similar gradient was evident in comparisons between relatives and control subjects, identifying it as a genetically inherited risk phenotype. In patients, functional connectivity in risk-affected and disease-affected dorsal frontostriatal circuitry correlated with the severity of both positive and negative symptoms. CONCLUSIONS AND RELEVANCE First-episode psychosis is associated with pronounced dysregulation of corticostriatal systems, characterized most prominently by hypoconnectivity of dorsal and hyperconnectivity of ventral frontostriatal circuits. These changes correlate with symptom severity and are also apparent in unaffected first-degree relatives, suggesting that they represent a putative risk phenotype for psychotic illness.
NeuroImage: Clinical | 2014
Rebecca Kerestes; Christopher G. Davey; Katerina Stephanou; Sarah Whittle; Ben J. Harrison
Background There is growing interest in understanding the neurobiology of major depressive disorder (MDD) in youth, particularly in the context of neuroimaging studies. This systematic review provides a timely comprehensive account of the available functional magnetic resonance imaging (fMRI) literature in youth MDD. Methods A literature search was conducted using PubMED, PsycINFO and Science Direct databases, to identify fMRI studies in younger and older youth with MDD, spanning 13–18 and 19–25 years of age, respectively. Results Twenty-eight studies focusing on 5 functional imaging domains were identified, namely emotion processing, cognitive control, affective cognition, reward processing and resting-state functional connectivity. Elevated activity in “extended medial network” regions including the anterior cingulate, ventromedial and orbitofrontal cortices, as well as the amygdala was most consistently implicated across these five domains. For the most part, findings in younger adolescents did not differ from those in older youth; however a general comparison of findings in both groups compared to adults indicated differences in the domains of cognitive control and affective cognition. Conclusions Youth MDD is characterized by abnormal activations in ventromedial frontal regions, the anterior cingulate and amygdala, which are broadly consistent with the implicated role of medial network regions in the pathophysiology of depression. Future longitudinal studies examining the effects of neurodevelopmental changes and pubertal maturation on brain systems implicated in youth MDD will provide a more comprehensive neurobiological model of youth depression.
Molecular Psychiatry | 2016
Miquel A. Fullana; Ben J. Harrison; Carles Soriano-Mas; Bram Vervliet; Narcís Cardoner; A Àvila-Parcet; Joaquim Radua
Classical Pavlovian fear conditioning remains the most widely employed experimental model of fear and anxiety, and continues to inform contemporary pathophysiological accounts of clinical anxiety disorders. Despite its widespread application in human and animal studies, the neurobiological basis of fear conditioning remains only partially understood. Here we provide a comprehensive meta-analysis of human fear-conditioning studies carried out with functional magnetic resonance imaging (fMRI), yielding a pooled sample of 677 participants from 27 independent studies. As a distinguishing feature of this meta-analysis, original statistical brain maps were obtained from the authors of 13 of these studies. Our primary analyses demonstrate that human fear conditioning is associated with a consistent and robust pattern of neural activation across a hypothesized genuine network of brain regions resembling existing anatomical descriptions of the ‘central autonomic–interoceptive network’. This finding is discussed with a particular emphasis on the neural substrates of conscious fear processing. Our associated meta-analysis of functional deactivations—a scarcely addressed dynamic in fMRI fear-conditioning studies—also suggests the existence of a coordinated brain response potentially underlying the ‘safety signal’ (that is, non-threat) processing. We attempt to provide an integrated summary on these findings with the view that they may inform ongoing studies of fear-conditioning processes both in healthy and clinical populations, as investigated with neuroimaging and other experimental approaches.
Schizophrenia Research | 2008
Marc L. Seal; Murat Yücel; Alex Fornito; Stephen J. Wood; Ben J. Harrison; Mark Walterfang; Gaby S. Pell; Christos Pantelis
Diffusion Tensor Imaging (DTI) investigations in schizophrenia have provided evidence of impairment in white matter as indicated by reduced fractional anisotropy (FA). However, the neuropathological implications of these findings remain unclear. In the current study, we conducted a voxelwise analysis of the constituent parameters of FA, Axial (lambda(||)) and Radial Diffusivity (lambda( upper left and right quadrants)), in 14 male participants with schizophrenia and 14 age, gender, education, and premorbid intelligence matched healthy controls. Significantly reduced FA and higher Radial Diffusivity were concurrently observed in several major white matter tracts in the schizophrenia group. This finding suggests that the loss of white matter integrity in schizophrenia is the result of demyelination and/or changes to the axonal cytoskeleton rather than gross axonal damage.
PLOS ONE | 2009
Jesús Pujol; Marina López-Solà; Hector Ortiz; Joan C. Vilanova; Ben J. Harrison; Murat Yücel; Carles Soriano-Mas; Narcís Cardoner; Joan Deus
Background Nociceptive stimuli may evoke brain responses longer than the stimulus duration often partially detected by conventional neuroimaging. Fibromyalgia patients typically complain of severe pain from gentle stimuli. We aimed to characterize brain response to painful pressure in fibromyalgia patients by generating activation maps adjusted for the duration of brain responses. Methodology/Principal Findings Twenty-seven women (mean age: 47.8 years) were assessed with fMRI. The sample included nine fibromyalgia patients and nine healthy subjects who received 4 kg/cm2 of pressure on the thumb. Nine additional control subjects received 6.8 kg/cm2 to match the patients for the severity of perceived pain. Independent Component Analysis characterized the temporal dynamics of the actual brain response to pressure. Statistical parametric maps were estimated using the obtained time courses. Brain response to pressure (18 seconds) consistently exceeded the stimulus application (9 seconds) in somatosensory regions in all groups. fMRI maps following such temporal dynamics showed a complete pain network response (sensory-motor cortices, operculo-insula, cingulate cortex, and basal ganglia) to 4 kg/cm2 of pressure in fibromyalgia patients. In healthy subjects, response to this low intensity pressure involved mainly somatosensory cortices. When matched for perceived pain (6.8 kg/cm2), control subjects showed also comprehensive activation of pain-related regions, but fibromyalgia patients showed significantly larger activation in the anterior insula-basal ganglia complex and the cingulate cortex. Conclusions/Significance The results suggest that data-driven fMRI assessments may complement conventional neuroimaging for characterizing pain responses and that enhancement of brain activation in fibromyalgia patients may be particularly relevant in emotion-related regions.