Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ben Nicholas is active.

Publication


Featured researches published by Ben Nicholas.


Nature Medicine | 2012

Preexisting influenza-specific CD4 + T cells correlate with disease protection against influenza challenge in humans

Tom Wilkinson; Chris Ka-fai Li; Cecilia S C Chui; Arthur K Y Huang; Molly R. Perkins; Julia Liebner; Rob Lambkin-Williams; Anthony Gilbert; John Oxford; Ben Nicholas; Karl J. Staples; Tao Dong; Andrew J. McMichael; Xiao-Ning Xu

Protective immunity against influenza virus infection is mediated by neutralizing antibodies, but the precise role of T cells in human influenza immunity is uncertain. We conducted influenza infection studies in healthy volunteers with no detectable antibodies to the challenge viruses H3N2 or H1N1. We mapped T cell responses to influenza before and during infection. We found a large increase in influenza-specific T cell responses by day 7, when virus was completely cleared from nasal samples and serum antibodies were still undetectable. Preexisting CD4+, but not CD8+, T cells responding to influenza internal proteins were associated with lower virus shedding and less severe illness. These CD4+ cells also responded to pandemic H1N1 (A/CA/07/2009) peptides and showed evidence of cytotoxic activity. These cells are an important statistical correlate of homotypic and heterotypic response and may limit severity of influenza infection by new strains in the absence of specific antibody responses. Our results provide information that may aid the design of future vaccines against emerging influenza strains.


European Respiratory Journal | 2013

Application of ’omics technologies to biomarker discovery in inflammatory lung diseases

Craig E. Wheelock; Victoria Goss; David Balgoma; Ben Nicholas; Joost Brandsma; Paul Skipp; Stuart Snowden; Dominic Burg; Arnaldo D'Amico; Ildiko Horvath; Amphun Chaiboonchoe; Hassan Ahmed; Stephane Ballereau; Christos Rossios; Kian Fan Chung; Paolo Montuschi; Stephen J. Fowler; Ian M. Adcock; Anthony D. Postle; Sven Erik Dahlén; Anthony Rowe; Peter J. Sterk; Charles Auffray; Ratko Djukanovic

Inflammatory lung diseases are highly complex in respect of pathogenesis and relationships between inflammation, clinical disease and response to treatment. Sophisticated large-scale analytical methods to quantify gene expression (transcriptomics), proteins (proteomics), lipids (lipidomics) and metabolites (metabolomics) in the lungs, blood and urine are now available to identify biomarkers that define disease in terms of combined clinical, physiological and patho-biological abnormalities. The aspiration is that these approaches will improve diagnosis, i.e. define pathological phenotypes, and facilitate the monitoring of disease and therapy, and also, unravel underlying molecular pathways. Biomarker studies can either select predefined biomarker(s) measured by specific methods or apply an “unbiased” approach involving detection platforms that are indiscriminate in focus. This article reviews the technologies presently available to study biomarkers of lung disease within the ’omics field. The contributions of the individual ’omics analytical platforms to the field of respiratory diseases are summarised, with the goal of providing background on their respective abilities to contribute to systems medicine-based studies of lung disease. Summary of the application of ’omics-based analytical platforms for biomarker discovery in inflammatory lung diseases http://ow.ly/mjGGc


The Journal of Allergy and Clinical Immunology | 2008

The soluble form of a disintegrin and metalloprotease 33 promotes angiogenesis : Implications for airway remodeling in asthma

Ilaria Puxeddu; Yun Yun Pang; Anna Harvey; Hans Michael Haitchi; Ben Nicholas; Hajime Yoshisue; Domenico Ribatti; Geraldine F. Clough; Robert M. Powell; Gillian Murphy; Neil A. Hanley; David I. Wilson; Peter H. Howarth; Stephen T. Holgate; Donna E. Davies

BACKGROUND A disintegrin and metalloprotease (ADAM)-33 is a susceptibility gene for asthma and chronic obstructive pulmonary disease whose function remains unknown. OBJECTIVE Because asthmatic bronchoalveolar lavage fluid contains high levels of soluble ADAM33 (sADAM33), which includes the catalytic domain, we postulated that its release from cell membranes might play functional roles in airway remodeling by promoting angiogenesis. METHODS The proangiogenic activity of the highly purified catalytic domain of ADAM33 or a catalytically inactive mutant was studied in vitro (Matrigel assay), ex vivo (human embryonic/fetal lung explants) and in vivo (chorioallantoic membrane assay). The regulation of sADAM33 release from cells overexpressing full-length ADAM33 and its biological activity were characterized. RESULTS We show that the purified catalytic domain of ADAM33, but not its inactive mutant, causes rapid induction of endothelial cell differentiation in vitro, and neovascularization ex vivo and in vivo. We also show that TGF-beta(2) enhances sADAM33 release from cells overexpressing full-length ADAM33 and that this truncated form is biologically active. CONCLUSION The discovery that sADAM33 promotes angiogenesis defines it as a tissue remodeling gene with potential to affect airflow obstruction and lung function independently of inflammation. As TGF-beta(2) enhances sADAM33 release, environmental factors that cause epithelial damage may synergize with ADAM33 in asthma pathogenesis, resulting in a disease-related gain of function. This highlights the potential for interplay between genetic and environmental factors in this complex disease.


Biochemical Society Transactions | 2009

Induced sputum: a window to lung pathology

Ben Nicholas; Ratko Djukanovic

Sputum is recognized as a sampling method for the monitoring and assessment of chronic lung diseases such as asthma, COPD (chronic obstructive pulmonary disease) and cystic fibrosis. Sputum samples the central airways and its protein components (e.g. mucins and cytokines), cellular components (e.g. eosinophils and neutrophils) and microbiological components (e.g. viruses and bacteria) can be used as markers of disease severity, exacerbation, susceptibility or progression. This paper describes the basic constituents of induced sputum and how these influence the quantification and identification of novel biomarkers of chronic lung diseases using techniques such as proteomics.


American Journal of Respiratory and Critical Care Medicine | 2016

Dysregulation of Antiviral Function of CD8+ T Cells in the Chronic Obstructive Pulmonary Disease Lung. Role of the PD-1–PD-L1 Axis

Richard T. McKendry; C. Mirella Spalluto; Hannah Burke; Ben Nicholas; Doriana Cellura; Aymen Al-Shamkhani; Karl J. Staples; Tom Wilkinson

RATIONALE Patients with chronic obstructive pulmonary disease (COPD) are susceptible to respiratory viral infections that cause exacerbations. The mechanisms underlying this susceptibility are not understood. Effectors of the adaptive immune response-CD8(+) T cells that clear viral infections-are present in increased numbers in the lungs of patients with COPD, but they fail to protect against infection and may contribute to the immunopathology of the disease. OBJECTIVES CD8(+) function and signaling through the programmed cell death protein (PD)-1 exhaustion pathway were investigated as a potential key mechanism of viral exacerbation of the COPD lung. METHODS Tissue from control subjects and patients with COPD undergoing lung resection was infected with live influenza virus ex vivo. Viral infection and expression of lung cell markers were analyzed using flow cytometry. MEASUREMENTS AND MAIN RESULTS The proportion of lung CD8(+) T cells expressing PD-1 was greater in COPD (mean, 16.2%) than in controls (4.4%, P = 0.029). Only epithelial cells and macrophages were infected with influenza, and there was no difference in the proportion of infected cells between controls and COPD. Infection up-regulated T-cell PD-1 expression in control and COPD samples. Concurrently, influenza significantly up-regulated the marker of cytotoxic degranulation (CD107a) on CD8(+) T cells (P = 0.03) from control subjects but not on those from patients with COPD. Virus-induced expression of the ligand PD-L1 was decreased on COPD macrophages (P = 0.04) with a corresponding increase in IFN-γ release from infected COPD explants compared with controls (P = 0.04). CONCLUSIONS This study has established a signal of cytotoxic immune dysfunction and aberrant immune regulation in the COPD lung that may explain both the susceptibility to viral infection and the excessive inflammation associated with exacerbations.


PLOS ONE | 2015

Viral Infection of Human Lung Macrophages Increases PDL1 Expression via IFNβ

Karl J. Staples; Ben Nicholas; Richard T. McKendry; C. Mirella Spalluto; Joshua C. Wallington; Craig W. Bragg; Emily C. Robinson; Kirstin Martin; Ratko Djukanovic; Tom Wilkinson

Lung macrophages are an important defence against respiratory viral infection and recent work has demonstrated that influenza-induced macrophage PDL1 expression in the murine lung leads to rapid modulation of CD8+ T cell responses via the PD1 receptor. This PD1/PDL1 pathway may downregulate acute inflammatory responses to prevent tissue damage. The aim of this study was to investigate the mechanisms of PDL1 regulation by human macrophages in response to viral infection. Ex-vivo viral infection models using influenza and RSV were established in human lung explants, isolated lung macrophages and monocyte-derived macrophages (MDM) and analysed by flow cytometry and RT-PCR. Incubation of lung explants, lung macrophages and MDM with X31 resulted in mean cellular infection rates of 18%, 18% and 29% respectively. Viral infection significantly increased cell surface expression of PDL1 on explant macrophages, lung macrophages and MDM but not explant epithelial cells. Infected MDM induced IFNγ release from autologous CD8+ T cells, an effect enhanced by PDL1 blockade. We observed increases in PDL1 mRNA and IFNβ mRNA and protein release by MDM in response to influenza infection. Knockdown of IFNβ by siRNA, resulted in a 37.5% reduction in IFNβ gene expression in response to infection, and a significant decrease in PDL1 mRNA. Furthermore, when MDM were incubated with IFNβ, this cytokine caused increased expression of PDL1 mRNA. These data indicate that human macrophage PDL1 expression modulates CD8+ cell IFNγ release in response to virus and that this expression is regulated by autologous IFNβ production.


Journal of Immunology | 2015

A Novel Lung Explant Model for the Ex Vivo Study of Efficacy and Mechanisms of Anti-Influenza Drugs

Ben Nicholas; Karl J. Staples; Stefan Moese; Eric Meldrum; Jon Ward; Patrick Dennison; Tom Havelock; Timothy S. C. Hinks; Khalid Amer; Edwin Woo; Martin Chamberlain; Neeta Singh; Malcolm North; Sandy Pink; Tom Wilkinson; Ratko Djukanovic

Influenza A virus causes considerable morbidity and mortality largely because of a lack of effective antiviral drugs. Viral neuraminidase inhibitors, which inhibit viral release from the infected cell, are currently the only approved drugs for influenza, but have recently been shown to be less effective than previously thought. Growing resistance to therapies that target viral proteins has led to increased urgency in the search for novel anti-influenza compounds. However, discovery and development of new drugs have been restricted because of differences in susceptibility to influenza between animal models and humans and a lack of translation between cell culture and in vivo measures of efficacy. To circumvent these limitations, we developed an experimental approach based on ex vivo infection of human bronchial tissue explants and optimized a method of flow cytometric analysis to directly quantify infection rates in bronchial epithelial tissues. This allowed testing of the effectiveness of TVB024, a vATPase inhibitor that inhibits viral replication rather than virus release, and to compare efficacy with the current frontline neuraminidase inhibitor, oseltamivir. The study showed that the vATPase inhibitor completely abrogated epithelial cell infection, virus shedding, and the associated induction of proinflammatory mediators, whereas oseltamivir was only partially effective at reducing these mediators and ineffective against innate responses. We propose, therefore, that this explant model could be used to predict the efficacy of novel anti-influenza compounds targeting diverse stages of the viral replication cycle, thereby complementing animal models and facilitating progression of new drugs into clinical trials.


European Respiratory Journal | 2017

Primary ciliary dyskinesia ciliated airway cells show increased susceptibility to Haemophilus influenzae biofilm formation

Woolf T. Walker; Claire Jackson; Raymond N. Allan; Samuel A. Collins; Michael J. Kelso; Ardeshir Rineh; Nageshwar R. Yepuri; Ben Nicholas; Laurie Lau; David A. Johnston; Peter M. Lackie; Saul N. Faust; Jane S. Lucas; Luanne Hall-Stoodley

Non-typeable Haemophilus influenzae (NTHi) is the most common pathogen in primary ciliary dyskinesia (PCD) patients. We hypothesised that abnormal ciliary motility and low airway nitric oxide (NO) levels on airway epithelial cells from PCD patients might be permissive for NTHi colonisation and biofilm development. We used a primary epithelial cell co-culture model to investigate NTHi infection. Primary airway epithelial cells from PCD and non-PCD patients were differentiated to ciliation using an air–liquid interface culture and then co-cultured with NTHi. NTHi adherence was greater on PCD epithelial cells compared to non-PCD cells (p<0.05) and the distribution of NTHi on PCD epithelium showed more aggregated NTHi in biofilms (p<0.001). Apart from defective ciliary motility, PCD cells did not significantly differ from non-PCD epithelial cells in the degree of ciliation and epithelial integrity or in cytokine, LL-37 and NO production. Treatment of PCD epithelia using exogenous NO and antibiotic significantly reduced NTHi viability in biofilms compared with antibiotic treatment alone. Impaired ciliary function was the primary defect in PCD airway epithelium underlying susceptibility to NTHi biofilm development compared with non-PCD epithelium. Although NO responses were similar, use of targeted NO with antibiotics enhanced killing of NTHi in biofilms, suggesting a novel therapeutic approach. Ex vivo study shows PCD airways risk NTHi biofilm colonisation; novel NO drug overcomes antibiotic tolerance http://ow.ly/GrXC30e4Tqv


PLOS ONE | 2016

Viral inhibition of bacterial phagocytosis by human macrophages: redundant role of CD36

Grace E. Cooper; Zoe C. Pounce; Joshua C. Wallington; Leidy Y. Bastidas-Legarda; Ben Nicholas; Chiamaka Chidomere; Emily C. Robinson; Kirstin Martin; Anna S. Tocheva; Myron Christodoulides; Ratko Djukanovic; Tom Wilkinson; Karl J. Staples

Macrophages are essential to maintaining lung homoeostasis and recent work has demonstrated that influenza-infected lung macrophages downregulate their expression of the scavenger receptor CD36. This receptor has also been shown to be involved in phagocytosis of Streptococcus pneumoniae, a primary agent associated with pneumonia secondary to viral infection. The aim of this study was to investigate the role of CD36 in the effects of viral infection on macrophage phagocytic function. Human monocyte-derived macrophages (MDM) were exposed to H3N2 X31 influenza virus, M37 respiratory syncytial virus (RSV) or UV-irradiated virus. No infection of MDM was seen upon exposure to UV-irradiated virus but incubation with live X31 or M37 resulted in significant levels of viral detection by flow cytometry or RT-PCR respectively. Infection resulted in significantly diminished uptake of S. pneumoniae by MDM and significantly decreased expression of CD36 at both the cell surface and mRNA level. Concurrently, there was a significant increase in IFNβ gene expression in response to infection and we observed a significant decrease in bacterial phagocytosis (p = 0.031) and CD36 gene expression (p = 0.031) by MDM cultured for 24 h in 50IU/ml IFNβ. Knockdown of CD36 by siRNA resulted in decreased phagocytosis, but this was mimicked by transfection reagent alone. When MDM were incubated with CD36 blocking antibodies no effect on phagocytic ability was observed. These data indicate that autologous IFNβ production by virally-infected cells can inhibit bacterial phagocytosis, but that decreased CD36 expression by these cells does not play a major role in this functional deficiency.


Proteomics | 2006

Shotgun proteomic analysis of human-induced sputum

Ben Nicholas; Paul Skipp; Richard Mould; Stephen I. Rennard; Donna E. Davies; C. David O'Connor; Ratko Djukanovic

Collaboration


Dive into the Ben Nicholas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karl J. Staples

Southampton General Hospital

View shared research outputs
Top Co-Authors

Avatar

Tom Wilkinson

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sandy Pink

University of Southampton

View shared research outputs
Top Co-Authors

Avatar

Jon Ward

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Malcolm North

University of Southampton

View shared research outputs
Researchain Logo
Decentralizing Knowledge