Ben O. de Lumen
University of California, Berkeley
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ben O. de Lumen.
Peptides | 2009
Blanca Hernández-Ledesma; Chia-Chien Hsieh; Ben O. de Lumen
Carcinogenesis is a multistage process derived from a combination of multiple heritable and environmental factors. It has been reported that populations consuming high levels of soybean products have both lower cancer incidence and mortality rates in the western countries. Lunasin is a novel and promising peptide initially discovered in soy and now found in wheat, barley and other seeds. Its cancer-preventive efficacy has been shown in mammalian cells which were induced by chemical carcinogens and viral oncogenes. Moreover, this peptide has been found to prevent skin cancer in a mouse cancer model induced by chemical carcinogens. Its bioavailability after oral administration makes it a perfect candidate as a chemopreventive agent. The purpose of this article is to review the discovery of this seed peptide and the most recent evidence on its possible benefits as an anticancer agent.
PLOS ONE | 2010
Chia-Chien Hsieh; Blanca Hernández-Ledesma; Hyun Jin Jeong; Jae Ho Park; Ben O. de Lumen
Background The lower incidence of breast cancer among Asian women compared with Western countries has been partly attributed to soy in the Asian diet, leading to efforts to identify the bioactive components that are responsible. Soy Bowman Birk Inhibitor Concentrate (BBIC) is a known cancer preventive agent now in human clinical trials. Methodology/Principal Findings The objectives of this work are to establish the presence and delineate the in vitro activity of lunasin and BBI found in BBIC, and study their bioavailability after oral administration to mice and rats. We report that lunasin and BBI are the two main bioactive ingredients of BBIC based on inhibition of foci formation, lunasin being more efficacious than BBI on an equimolar basis. BBI and soy Kunitz Trypsin Inhibitor protect lunasin from in vitro digestion with pancreatin. Oral administration of 3H-labeled lunasin with lunasin-enriched soy results in 30% of the peptide reaching target tissues in an intact and bioactive form. In a xenograft model of nude mice transplanted with human breast cancer MDA-MB-231 cells, intraperitoneal injections of lunasin, at 20 mg/kg and 4 mg/kg body weight, decrease tumor incidence by 49% and 33%, respectively, compared with the vehicle-treated group. In contrast, injection with BBI at 20 mg/kg body weight shows no effect on tumor incidence. Tumor generation is significantly reduced with the two doses of lunasin, while BBI is ineffective. Lunasin inhibits cell proliferation and induces cell death in the breast tumor sections. Conclusions/Significance We conclude that lunasin is actually the bioactive cancer preventive agent in BBIC, and BBI simply protects lunasin from digestion when soybean and other seed foods are eaten by humans.
Nutrition and Cancer | 2003
Yi Lam; Alfredo Galvez; Ben O. de Lumen
Lunasin™, a novel and promising chemopreventive compound isolated from soybean cotyledon, is a 43-amino acid peptide that contains a -RGD-cell adhesion motif followed by 8 aspartic acid residues at the carboxyl end and a structurally conserved helix region. We showed previously that lunasin peptide applied exogenously reduces foci formation in mouse fibroblast cells treated with chemical carcinogens and inhibits skin tumorigenesis induced by chemical carcinogens in mice when applied topically. In this study, lunasin peptide applied to cell culture suppresses foci formation in E1A-transfected mouse fibroblast NIH 3T3 cells. Within 18 h of exogenous application, lunasin internalizes into the cell and localizes in the nucleus. In an initial study of genes affected by lunasin, the peptide increases p21 protein levels fivefold in cells transfected with E1A but not in untransfected cells. In contrast to its inhibitory effects on cell transformation, lunasin has no effect on growth of immortalized (nontumorigenc) and established cancer cells. This is the first report that lunasin suppresses transformation of mammalian cells induced by an oncogene (E1A) in addition to chemical carcinogens.
Journal of Agricultural and Food Chemistry | 2009
Vermont P. Dia; Sofia Torres; Ben O. de Lumen; John W. Erdman; Elvira Gonzalez de Mejia
Lunasin is a 43-amino acid bioactive peptide from soybean and other plant sources which is reported to possess anti-inflammatory and anticancer properties. The objective of this study was to assess the presence and concentration of lunasin in blood of men fed soy protein products. Five healthy male subjects who were 18-25 years old consumed 50 g of soy protein for 5 days, and blood was taken 30 min and 1 h after soy protein ingestion on day 5. Lunasin was isolated from plasma using strong anion exchange beads in a magnetic particle concentrator and eluted with 20 mM triethanolamine at pH 8.0 with 0.20 M NaCl. The concentration of lunasin in plasma as determined by an enzyme-linked immunosorbent assay ranged in the various subjects from 50.2 to 110.6 ng/mL of plasma (average +/- standard deviation, 66.0 +/- 25.4 ng/mL) for blood taken at 30 min and from 33.5 to 122.7 ng/mL of plasma (71.0 +/- 32.8 ng/mL) for blood withdrawn 1 h after ingestion on day 5. We estimated an average of 4.5% absorption (range of 2.2-7.8%) of lunasin from the total lunasin ingested from 50 g of soy protein. Matrix-assisted laser desorption ionization time-of-flight peptide mass mapping showed that a 5 kDa peptide similar to synthetic lunasin was present in plasma samples of people who consumed soy protein while absent at the baseline plasma samples from the same individuals. Liquid chromatography-tandem mass spectrometry analysis showed the presence of amino acid sequences from lunasin in plasma samples after soy intake for 30 min and 1 h. No peptides from lunasin were present in plasma samples without soy intake. The results of this study suggest that lunasin is bioavailable in humans, an important requirement for its anticancer potential.
Nutrition and Cancer | 2009
Hyung Jin Jeong; Jeong Rak Lee; Jin Boo Jeong; Jae Ho Park; Young-keun Cheong; Ben O. de Lumen
Lunasin is a unique 43-amino acid peptide that has been shown to be chemopreventive in mammalian cells and in a skin cancer mouse model against oncogenes and chemical carcinogens. In search for new sources of lunasin and to better understand the role of cereals in cancer prevention, we report here the properties of lunasin from rye. The stability and bioavailability were measured by in vitro digestibility assay using pepsin and pancreatin and feeding rats with lunasin-enriched rye (LER). Inhibition of histone acetyl transferase (HAT) and nuclear localization in mammalian cells were used to measure lunasin bioactivity. Lunasin is present in 15 out of 21 cultivars of rye analyzed. Lunasin present in rye crude protein preparation is stable to pepsin and pancreatin in in vitro digestion. The liver, kidney, and blood of rats fed LER show the presence of lunasin in Western blot. Lunasin extracted from these tissues inhibits the activities of HATs, confirming that the peptide is intact and bioactive. Lunasin purified from rye internalizes in the nuclei of mouse fibroblast cells. We conclude that lunasin in rye is bioavailable and bioactive and that consumption of rye may play an important role of cancer prevention in rye-consuming populations.
Cancer Letters | 2010
Jin Boo Jeong; Ben O. de Lumen; Hyung Jin Jeong
Oxidative DNA damage is the most critical factor implicated in carcinogenesis and other disorders. However, the protective effects of lunasin against oxidative DNA damage have not yet reported. In this study, we report here the protective effect of lunasin purified from Solanum nigrum L. against oxidative DNA. Lunasin protected DNA from the oxidative damage induced by Fe(2+) ion and hydroxyl radical. To better understand the mechanism for the protective effect of lunasin against DNA damage, the abilities to chelate Fe(2+), scavenge the generated hydroxyl radical and block the generation of hydroxyl radical were evaluated. Although it did not scavenge generated hydroxyl radical, lunasin blocked the generation of hydroxyl radical by chelating Fe(2+) ion. We conclude that lunasin protects DNA from oxidation by blocking fenton reaction between Fe(2+) and H(2)O(2) by chelating Fe(2+) and that consumption of lunasin may play an important role in the chemoprevention for the oxidative carcinogenesis.
Chemico-Biological Interactions | 2010
Chia-Chien Hsieh; Blanca Hernández-Ledesma; Ben O. de Lumen
Breast cancer is one of the most common tumors in women of Western countries. The high aggressiveness and therapeutic resistance of estrogen-independent breast tumors have motivated the development of new strategies for prevention and/or treatment. Combinations of two or more chemopreventive agents are currently being used to achieve greater inhibitory effects on breast cancer cells. This study reveals that both aspirin and lunasin inhibit, in a dose-dependent manner, human estrogen-independent breast cancer MDA-MB-231 cell proliferation. These compounds arrest the cell cycle in the S- and G1-phases, respectively, acting synergistically to induce apoptosis. To begin elucidating the mechanism(s) of action of these compounds, different molecular targets involved in cell cycle control, apoptosis and signal transduction have been evaluated by real-time polymerase chain reaction (RT-PCR) array. The cell growth inhibitory effect of a lunasin/aspirin combination is achieved, at least partially, by modulating the expression of genes encoding G1 and S-phase regulatory proteins. Lunasin/aspirin therapy exerts its potent pro-apoptotic effect is at least partially achieved through modulating the extrinsic-apoptosis dependent pathway. Synergistic down-regulatory effects were observed for ERBB2, AKT1, PIK3R1, FOS and JUN signaling genes, whose amplification has been reported as being responsible for breast cancer cell growth and resistance to apoptosis. Therefore, our results suggest that a combination of these two compounds is a promising strategy to prevent/treat breast cancer.
Journal of Food Science | 2010
Chia-Chien Hsieh; Blanca Hernández-Ledesma; Ben O. de Lumen
Lunasin is a novel peptide identified in soybean and other seeds. This study evaluated the anti-tumorigenic effects of lunasin on 7,12-dimethylbenz(a)anthracene (DMBA) and 3-methylcholanthrene-treated (MCA) fibroblast NIH/3T3 cells. Lunasin significantly inhibited cell proliferation and cancerous foci formation in these 2 chemical carcinogens-treated cells. An in vivo SENCAR mouse model induced with DMBA was used to study the mammary cancer preventive properties of dietary lunasin contained in soy protein. Tumor incidence was 67% and 50%, and the tumor generation was 1.88 ± 0.48 and 1.17 ± 0.17, respectively, for the mice fed control diet and experimental diet obtained after AIN-93G supplementation with lunasin-enriched soy protein concentrate (containing 0.23% lunasin). However, no effects were observed in mice fed AIN-93G supplemented with soy protein concentrate (containing 0.15% lunasin). The data provided illustrate the anticancer potential of lunasin both in vitro and in vivo and supports the recommendation of soy protein as a dietary component that may aid in the prevention of mammary cancer.
Nutrition and Cancer | 2010
Hyung Jin Jeong; Jin Boo Jeong; Chia Chien Hsieh; Blanca Hernández-Ledesma; Ben O. de Lumen
Lunasin, a unique 43-amino acid peptide found in a number of seeds, has been shown to be chemopreventive in mammalian cells and in a skin cancer mouse model. To elucidate the role of cereals in cancer prevention, we report here the prevalence, bioavailability, and bioactivity of lunasin from barley. Lunasin is present in all cultivars of barley analyzed. The liver and kidney of rats fed with lunasin-enriched barley (LEB) show the presence of lunasin in Western blot. Lunasin extracted from the kidney and liver inhibits the activities of HATs (histone acetyl transferases), yGCN5 by 20% and 18% at 100 nM, and PCAF activity by 25% and 24% at 100 nM, confirming that the peptide is intact and bioactive. Purified barley lunasin localizes in the nuclei of NIH 3T3 cells. Barley lunasin added to NIH 3T3 cells in the presence of the chemical carcinogen MCA activates the expression of tumor suppressors p21 and p15 by 45% and 47%, decreases cyclin D1 by 98%, and inhibits Rb hyperphosphorylation by 45% compared with the MCA treatment alone. We conclude that lunasin is prevalent in barley, bioavailable, and bioactive and that consumption of barley could play an important role of cancer prevention in barley-consuming populations.
Peptides | 2010
Enrique Maldonado-Cervantes; Hyung Jin Jeong; Fabiola León-Galván; Alberto Barrera-Pacheco; Antonio De León-Rodríguez; Elvira Gonzalez de Mejia; Ben O. de Lumen; Ana P. Barba de la Rosa
Because an unbalanced diet is an important risk factor for several illnesses, interest has increased in finding novel health-promoting foods. Amaranth produces seeds that not only have substantial nutritional properties but that also contain phytochemical compounds as rutin and nicotiflorin and peptides with antihypertensive and anticarcinogenic activities. We report that a cancer-preventive peptide in amaranth has activities similar to those of soybean lunasin. The amaranth lunasin-like peptide, however, requires less time than the soybean lunasin to internalize into the nucleus of NIH-3T3 cells, and inhibits histone acetylation (H(3) and H(4) in a 70 and 77%, respectively). The amaranth lunasin-like peptide inhibited the transformation of NIH-3T3 cells to cancerous foci. The open reading frame (ORF) of amaranth lunasin corresponds to a bifunctional inhibitor/lipid-transfer protein (LTP). LTPs are a family of proteins that in plants are implicated in different functions, albeit all linked to developmental processes and biotic and abiotic stress resistance. Our results open new intriguing questions about the function of lunasin in plants and support that amaranth is a food alternative containing natural peptides with health-promoting benefits.