Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ben Taskar is active.

Publication


Featured researches published by Ben Taskar.


Statistics and Computing | 2010

Joint covariate selection and joint subspace selection for multiple classification problems

Guillaume Obozinski; Ben Taskar; Michael I. Jordan

We address the problem of recovering a common set of covariates that are relevant simultaneously to several classification problems. By penalizing the sum of ℓ2 norms of the blocks of coefficients associated with each covariate across different classification problems, similar sparsity patterns in all models are encouraged. To take computational advantage of the sparsity of solutions at high regularization levels, we propose a blockwise path-following scheme that approximately traces the regularization path. As the regularization coefficient decreases, the algorithm maintains and updates concurrently a growing set of covariates that are simultaneously active for all problems. We also show how to use random projections to extend this approach to the problem of joint subspace selection, where multiple predictors are found in a common low-dimensional subspace. We present theoretical results showing that this random projection approach converges to the solution yielded by trace-norm regularization. Finally, we present a variety of experimental results exploring joint covariate selection and joint subspace selection, comparing the path-following approach to competing algorithms in terms of prediction accuracy and running time.


arXiv: Machine Learning | 2012

Determinantal Point Processes for Machine Learning

Alex Kulesza; Ben Taskar

Determinantal point processes (DPPs) are elegant probabilistic models of repulsion that arise in quantum physics and random matrix theory. In contrast to traditional structured models like Markov random fields, which become intractable and hard to approximate in the presence of negative correlations, DPPs offer efficient and exact algorithms for sampling, marginalization, conditioning, and other inference tasks. While they have been studied extensively by mathematicians, giving rise to a deep and beautiful theory, DPPs are relatively new in machine learning. Determinantal Point Processes for Machine Learning provides a comprehensible introduction to DPPs, focusing on the intuitions, algorithms, and extensions that are most relevant to the machine learning community, and shows how DPPs can be applied to real-world applications like finding diverse sets of high-quality search results, building informative summaries by selecting diverse sentences from documents, modeling non-overlapping human poses in images or video, and automatically building timelines of important news stories. It presents the general mathematical background to DPPs along with a range of modeling extensions, efficient algorithms, and theoretical results that aim to enable practical modeling and learning.


empirical methods in natural language processing | 2005

A Discriminative Matching Approach to Word Alignment

Ben Taskar; Lacoste-Julien Simon; Klein Dan

We present a discriminative, large-margin approach to feature-based matching for word alignment. In this framework, pairs of word tokens receive a matching score, which is based on features of that pair, including measures of association between the words, distortion between their positions, similarity of the orthographic form, and so on. Even with only 100 labeled training examples and simple features which incorporate counts from a large unlabeled corpus, we achieve AER performance close to IBM Model 4, in much less time. Including Model 4 predictions as features, we achieve a relative AER reduction of 22% in over intersected Model 4 alignments.


computer vision and pattern recognition | 2013

MODEC: Multimodal Decomposable Models for Human Pose Estimation

Benjamin Sapp; Ben Taskar

We propose a multimodal, decomposable model for articulated human pose estimation in monocular images. A typical approach to this problem is to use a linear structured model, which struggles to capture the wide range of appearance present in realistic, unconstrained images. In this paper, we instead propose a model of human pose that explicitly captures a variety of pose modes. Unlike other multimodal models, our approach includes both global and local pose cues and uses a convex objective and joint training for mode selection and pose estimation. We also employ a cascaded mode selection step which controls the trade-off between speed and accuracy, yielding a 5x speedup in inference and learning. Our model outperforms state-of-the-art approaches across the accuracy-speed trade-off curve for several pose datasets. This includes our newly-collected dataset of people in movies, FLIC, which contains an order of magnitude more labeled data for training and testing than existing datasets.


european conference on computer vision | 2010

Cascaded models for articulated pose estimation

Benjamin Sapp; Alexander Toshev; Ben Taskar

We address the problem of articulated human pose estimation by learning a coarse-to-fine cascade of pictorial structure models. While the fine-level state-space of poses of individual parts is too large to permit the use of rich appearance models, most possibilities can be ruled out by efficient structured models at a coarser scale. We propose to learn a sequence of structured models at different pose resolutions, where coarse models filter the pose space for the next level via their max-marginals. The cascade is trained to prune as much as possible while preserving true poses for the final level pictorial structure model. The final level uses much more expensive segmentation, contour and shape features in the model for the remaining filtered set of candidates. We evaluate our framework on the challenging Buffy and PASCAL human pose datasets, improving the state-of-the-art.


computer vision and pattern recognition | 2011

Parsing human motion with stretchable models

Benjamin Sapp; David Weiss; Ben Taskar

We address the problem of articulated human pose estimation in videos using an ensemble of tractable models with rich appearance, shape, contour and motion cues. In previous articulated pose estimation work on unconstrained videos, using temporal coupling of limb positions has made little to no difference in performance over parsing frames individually [8, 28]. One crucial reason for this is that joint parsing of multiple articulated parts over time involves intractable inference and learning problems, and previous work has resorted to approximate inference and simplified models. We overcome these computational and modeling limitations using an ensemble of tractable submodels which couple locations of body joints within and across frames using expressive cues. Each submodel is responsible for tracking a single joint through time (e.g., left elbow) and also models the spatial arrangement of all joints in a single frame. Because of the tree structure of each submodel, we can perform efficient exact inference and use rich temporal features that depend on image appearance, e.g., color tracking and optical flow contours. We propose and experimentally investigate a hierarchy of submodel combination methods, and we find that a highly efficient max-marginal combination method outperforms much slower (by orders of magnitude) approximate inference using dual decomposition. We apply our pose model on a new video dataset of highly varied and articulated poses from TV shows. We show significant quantitative and qualitative improvements over state-of-the-art single-frame pose estimation approaches.


computer vision and pattern recognition | 2010

Adaptive pose priors for pictorial structures

Benjamin Sapp; Chris Jordan; Ben Taskar

Pictorial structure (PS) models are extensively used for part-based recognition of scenes, people, animals and multi-part objects. To achieve tractability, the structure and parameterization of the model is often restricted, for example, by assuming tree dependency structure and unimodal, data-independent pairwise interactions. These expressivity restrictions fail to capture important patterns in the data. On the other hand, local methods such as nearest-neighbor classification and kernel density estimation provide non-parametric flexibility but require large amounts of data to generalize well. We propose a simple semi-parametric approach that combines the tractability of pictorial structure inference with the flexibility of non-parametric methods by expressing a subset of model parameters as kernel regression estimates from a learned sparse set of exemplars. This yields query-specific, image-dependent pose priors. We develop an effective shape-based kernel for upper-body pose similarity and propose a leave-one-out loss function for learning a sparse subset of exemplars for kernel regression. We apply our techniques to two challenging datasets of human figure parsing and advance the state-of-the-art (from 80% to 86% on the Buffy dataset [8]), while using only 15% of the training data as exemplars.


international joint conference on natural language processing | 2009

Dependency Grammar Induction via Bitext Projection Constraints

Kuzman Ganchev; Jennifer Gillenwater; Ben Taskar

Broad-coverage annotated treebanks necessary to train parsers do not exist for many resource-poor languages. The wide availability of parallel text and accurate parsers in English has opened up the possibility of grammar induction through partial transfer across bitext. We consider generative and discriminative models for dependency grammar induction that use word-level alignments and a source language parser (English) to constrain the space of possible target trees. Unlike previous approaches, our framework does not require full projected parses, allowing partial, approximate transfer through linear expectation constraints on the space of distributions over trees. We consider several types of constraints that range from generic dependency conservation to language-specific annotation rules for auxiliary verb analysis. We evaluate our approach on Bulgarian and Spanish CoNLL shared task data and show that we consistently outperform unsupervised methods and can outperform supervised learning for limited training data.


IEEE Design & Test of Computers | 2014

The Swarm at the Edge of the Cloud

Edward A. Lee; Jan M. Rabaey; Björn Hartmann; John Kubiatowicz; Kris Pister; Tajana Simunic Rosing; John Wawrzynek; David Wessel; Alberto L. Sangiovanni-Vincentelli; Sanjit A. Seshia; David T. Blaauw; Prabal Dutta; Kevin Fu; Carlos Guestrin; Ben Taskar; Roozbeh Jafari; Douglas L. Jones; Vijay Kumar; Rahul Mangharam; George J. Pappas; Richard M. Murray; Anthony Rowe

Mobile devices such as laptops, netbooks, tablets, smart phones and game consoles have become our de facto interface to the vast amount of information delivery and processing capabilities of the cloud. The move to mobility has been enabled by the dual forces of ubiquitous wireless connectivity combined with the increasing energy efficiency offered by Moores law.


computer vision and pattern recognition | 2010

Object detection via boundary structure segmentation

Alexander Toshev; Ben Taskar; Kostas Daniilidis

We address the problem of object detection and segmentation using holistic properties of object shape. Global shape representations are highly susceptible to clutter inevitably present in realistic images, and can be robustly recognized only using a precise segmentation of the object. To this end, we propose a figure/ground segmentation method for extraction of image regions that resemble the global properties of a model boundary structure and are perceptually salient. Our shape representation, called the chordiogram, is based on geometric relationships of object boundary edges, while the perceptual saliency cues we use favor coherent regions distinct from the background. We formulate the segmentation problem as an integer quadratic program and use a semidefinite programming relaxation to solve it. Obtained solutions provide the segmentation of an object as well as a detection score used for object recognition. Our single-step approach improves over state of the art methods on several object detection and segmentation benchmarks.

Collaboration


Dive into the Ben Taskar's collaboration.

Top Co-Authors

Avatar

Lise Getoor

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kuzman Ganchev

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Weiss

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge