Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ben Van Handel is active.

Publication


Featured researches published by Ben Van Handel.


Science | 2008

Human Fetal Hemoglobin Expression Is Regulated by the Developmental Stage- Specific Repressor BCL11A

Vijay G. Sankaran; Tobias F. Menne; Jian Xu; Thomas E. Akie; Guillaume Lettre; Ben Van Handel; Hanna Mikkola; Joel N. Hirschhorn; Alan Cantor; Stuart H. Orkin

Differences in the amount of fetal hemoglobin (HbF) that persists into adulthood affect the severity of sickle cell disease and the β-thalassemia syndromes. Genetic association studies have identified sequence variants in the gene BCL11A that influence HbF levels. Here, we examine BCL11A as a potential regulator of HbF expression. The high-HbF BCL11A genotype is associated with reduced BCL11A expression. Moreover, abundant expression of full-length forms of BCL11A is developmentally restricted to adult erythroid cells. Down-regulation of BCL11A expression in primary adult erythroid cells leads to robust HbF expression. Consistent with a direct role of BCL11A in globin gene regulation, we find that BCL11A occupies several discrete sites in the β-globin gene cluster. BCL11A emerges as a therapeutic target for reactivation of HbF in β-hemoglobin disorders.


Developmental Cell | 2012

Combinatorial Assembly of Developmental Stage-Specific Enhancers Controls Gene Expression Programs during Human Erythropoiesis

Jian Xu; Zhen Shao; Kimberly Glass; Daniel E. Bauer; Luca Pinello; Ben Van Handel; Serena Hou; John A. Stamatoyannopoulos; Hanna Mikkola; Guo-Cheng Yuan; Stuart H. Orkin

Gene-distal enhancers are critical for tissue-specific gene expression, but their genomic determinants within a specific lineage at different stages of development are unknown. Here we profile chromatin state maps, transcription factor occupancy, and gene expression profiles during human erythroid development at fetal and adult stages. Comparative analyses of human erythropoiesis identify developmental stage-specific enhancers as primary determinants of stage-specific gene expression programs. We find that erythroid master regulators GATA1 and TAL1 act cooperatively within active enhancers but confer little predictive value for stage specificity. Instead, a set of stage-specific coregulators collaborates with master regulators and contributes to differential gene expression. We further identify and validate IRF2, IRF6, and MYB as effectors of an adult-stage expression program. Thus, the combinatorial assembly of lineage-specific master regulators and transcriptional coregulators within developmental stage-specific enhancers determines gene expression programs and temporal regulation of transcriptional networks in a mammalian genome.


Cell | 2012

Scl Represses Cardiomyogenesis in Prospective Hemogenic Endothelium and Endocardium

Ben Van Handel; Amelie Montel-Hagen; Rajkumar Sasidharan; Haruko Nakano; Roberto Ferrari; Cornelis J. Boogerd; Johann Schredelseker; Yanling Wang; Sean Hunter; Tonis Org; Jian Zhou; Xinmin Li; Matteo Pellegrini; Jau-Nian Chen; Stuart H. Orkin; Siavash K. Kurdistani; Sylvia M. Evans; Atsushi Nakano; Hanna Mikkola

Endothelium in embryonic hematopoietic tissues generates hematopoietic stem/progenitor cells; however, it is unknown how its unique potential is specified. We show that transcription factor Scl/Tal1 is essential for both establishing the hematopoietic transcriptional program in hemogenic endothelium and preventing its misspecification to a cardiomyogenic fate. Scl(-/-) embryos activated a cardiac transcriptional program in yolk sac endothelium, leading to the emergence of CD31+Pdgfrα+ cardiogenic precursors that generated spontaneously beating cardiomyocytes. Ectopic cardiogenesis was also observed in Scl(-/-) hearts, where the disorganized endocardium precociously differentiated into cardiomyocytes. Induction of mosaic deletion of Scl in Scl(fl/fl)Rosa26Cre-ER(T2) embryos revealed a cell-intrinsic, temporal requirement for Scl to prevent cardiomyogenesis from endothelium. Scl(-/-) endothelium also upregulated the expression of Wnt antagonists, which promoted rapid cardiomyocyte differentiation of ectopic cardiogenic cells. These results reveal unexpected plasticity in embryonic endothelium such that loss of a single master regulator can induce ectopic cardiomyogenesis from endothelial cells.


Cell Research | 2012

Defining the nature of human pluripotent stem cell progeny

Michaela Patterson; David Chan; Iris Ha; Dana Case; Yongyan Cui; Ben Van Handel; Hanna Mikkola; William E. Lowry

While it is clear that human pluripotent stem cells (hPSCs) can differentiate to generate a panoply of various cell types, it is unknown how closely in vitro development mirrors that which occurs in vivo. To determine whether human embryonic stem cells (hESCs) and human-induced pluripotent stem cells (hiPSCs) make equivalent progeny, and whether either makes cells that are analogous to tissue-derived cells, we performed comprehensive transcriptome profiling of purified PSC derivatives and their tissue-derived counterparts. Expression profiling demonstrated that hESCs and hiPSCs make nearly identical progeny for the neural, hepatic, and mesenchymal lineages, and an absence of re-expression from exogenous reprogramming factors in hiPSC progeny. However, when compared to a tissue-derived counterpart, the progeny of both hESCs and hiPSCs maintained expression of a subset of genes normally associated with early mammalian development, regardless of the type of cell generated. While pluripotent genes (OCT4, SOX2, REX1, and NANOG) appeared to be silenced immediately upon differentiation from hPSCs, genes normally unique to early embryos (LIN28A, LIN28B, DPPA4, and others) were not fully silenced in hPSC derivatives. These data and evidence from expression patterns in early human fetal tissue (3-16 weeks of development) suggest that the differentiated progeny of hPSCs are reflective of very early human development (< 6 weeks). These findings provide support for the idea that hPSCs can serve as useful in vitro models of early human development, but also raise important issues for disease modeling and the clinical application of hPSC derivatives.


Nature Communications | 2013

Haemogenic endocardium contributes to transient definitive haematopoiesis

Haruko Nakano; Xiaoqian Liu; Armin Arshi; Yasuhiro Nakashima; Ben Van Handel; Rajkumar Sasidharan; Andrew W. Harmon; Jae Ho Shin; Robert J. Schwartz; Simon J. Conway; Richard P. Harvey; Mohammad Pashmforoush; Hanna Mikkola; Atsushi Nakano

Hematopoietic cells arise from spatiotemporally restricted domains in the developing embryo. Although studies of non-mammalian animal and in vitro embryonic stem cell models suggest a close relationship among cardiac, endocardial, and hematopoietic lineages, it remains unknown whether the mammalian heart tube serves as a hemogenic organ akin to the dorsal aorta. Here we examine the hemogenic activity of the developing endocardium. Mouse heart explants generate myeloid and erythroid colonies in the absence of circulation. Hemogenic activity arises from a subset of endocardial cells in the outflow cushion and atria earlier than in the aorta-gonad-mesonephros region, and is transient and definitive in nature. Interestingly, key cardiac transcription factors, Nkx2-5 and Isl1, are expressed in and required for the hemogenic population of the endocardium. Together, these data suggest that a subset of endocardial/endothelial cells expressing cardiac markers serve as a de novo source for transient definitive hematopoietic progenitors.


PLOS ONE | 2012

CCN2/connective tissue growth factor is essential for pericyte adhesion and endothelial basement membrane formation during angiogenesis.

Faith Hall-Glenn; R. Andrea De Young; Bau-Lin Huang; Ben Van Handel; Jennifer J. Hofmann; Thomas T. Chen; Aaron W. Choi; Jessica R. Ong; Paul D. Benya; Hanna Mikkola; M. Luisa Iruela-Arispe; Karen M. Lyons

CCN2/Connective Tissue Growth Factor (CTGF) is a matricellular protein that regulates cell adhesion, migration, and survival. CCN2 is best known for its ability to promote fibrosis by mediating the ability of transforming growth factor β (TGFβ) to induce excess extracellular matrix production. In addition to its role in pathological processes, CCN2 is required for chondrogenesis. CCN2 is also highly expressed during development in endothelial cells, suggesting a role in angiogenesis. The potential role of CCN2 in angiogenesis is unclear, however, as both pro- and anti-angiogenic effects have been reported. Here, through analysis of Ccn2-deficient mice, we show that CCN2 is required for stable association and retention of pericytes by endothelial cells. PDGF signaling and the establishment of the endothelial basement membrane are required for pericytes recruitment and retention. CCN2 induced PDGF-B expression in endothelial cells, and potentiated PDGF-B-mediated Akt signaling in mural (vascular smooth muscle/pericyte) cells. In addition, CCN2 induced the production of endothelial basement membrane components in vitro, and was required for their expression in vivo. Overall, these results highlight CCN2 as an essential mediator of vascular remodeling by regulating endothelial-pericyte interactions. Although most studies of CCN2 function have focused on effects of CCN2 overexpression on the interstitial extracellular matrix, the results presented here show that CCN2 is required for the normal production of vascular basement membranes.


Stem cell reports | 2016

Genetic Variability Overrides the Impact of Parental Cell Type and Determines iPSC Differentiation Potential

Roksana Moraghebi; Cristina Valensisi; Johannes Kettunen; Colin Andrus; Kalyan Pasumarthy; Mahito Nakanishi; Ken Nishimura; Manami Ohtaka; Jere Weltner; Ben Van Handel; Olavi Parkkonen; Juha Sinisalo; Anu Jalanko; R. David Hawkins; Niels-Bjarne Woods; Timo Otonkoski; Ras Trokovic

Summary Reports on the retention of somatic cell memory in induced pluripotent stem cells (iPSCs) have complicated the selection of the optimal cell type for the generation of iPSC biobanks. To address this issue we compared transcriptomic, epigenetic, and differentiation propensities of genetically matched human iPSCs derived from fibroblasts and blood, two tissues of the most practical relevance for biobanking. Our results show that iPSC lines derived from the same donor are highly similar to each other. However, genetic variation imparts a donor-specific expression and methylation profile in reprogrammed cells that leads to variable functional capacities of iPSC lines. Our results suggest that integration-free, bona fide iPSC lines from fibroblasts and blood can be combined in repositories to form biobanks. Due to the impact of genetic variation on iPSC differentiation, biobanks should contain cells from large numbers of donors.


Biomaterials | 2011

Recapitulation of the embryonic cardiovascular progenitor cell niche.

Katja Schenke-Layland; Ali Nsair; Ben Van Handel; Ekaterini Angelis; Jessica M. Gluck; Miriam Votteler; Joshua I. Goldhaber; Hanna Mikkola; Michael Kahn; William R. MacLellan

Stem or progenitor cell populations are often established in unique niche microenvironments that regulate cell fate decisions. Although niches have been shown to be critical for the normal development of several tissues, their role in the cardiovascular system is poorly understood. In this study, we characterized the cardiovascular progenitor cell (CPC) niche in developing human and mouse hearts, identifying signaling pathways and extracellular matrix (ECM) proteins that are crucial for CPC maintenance and expansion. We demonstrate that collagen IV (ColIV) and β-catenin-dependent signaling are essential for maintaining and expanding undifferentiated CPCs. Since niches are three-dimensional (3D) structures, we investigated the impact of a 3D microenvironment that mimics the in vivo niche ECM. Employing electrospinning technologies, 3D in vitro niche substrates were bioengineered to serve as culture inserts. The three-dimensionality of these structures increased mouse embryonic stem cell differentiation into CPCs when compared to 2D control cultures, which was further enhanced by incorporation of ColIV into the substrates. Inhibiting p300-dependent β-catenin signals with the small molecule IQ1 facilitated further expansion of CPCs. Our study represents an innovative approach to bioengineer cardiac niches that can serve as unique 3D in vitro systems to facilitate CPC expansion and study CPC biology.


Blood | 2010

The first trimester human placenta is a site for terminal maturation of primitive erythroid cells

Ben Van Handel; Sacha Prashad; Nargess Hassanzadeh-Kiabi; Andy Huang; Mattias Magnusson; Boriana Atanassova; Angela Chen; Eija Hämäläinen; Hanna Mikkola

Embryonic hematopoiesis starts via the generation of primitive red blood cells (RBCs) that satisfy the embryos immediate oxygen needs. Although primitive RBCs were thought to retain their nuclei, recent studies have shown that primitive RBCs in mice enucleate in the fetal liver. It has been unknown whether human primitive RBCs enucleate, and what hematopoietic site might support this process. Our data indicate that the terminal maturation and enucleation of human primitive RBCs occurs in first trimester placental villi. Extravascular ζ-globin(+) primitive erythroid cells were found in placental villi between 5-7 weeks of development, at which time the frequency of enucleated RBCs was higher in the villous stroma than in circulation. RBC enucleation was further evidenced by the presence of primitive reticulocytes and pyrenocytes (ejected RBC nuclei) in the placenta. Extravascular RBCs were found to associate with placental macrophages, which contained ingested nuclei. Clonogenic macrophage progenitors of fetal origin were present in the chorionic plate of the placenta before the onset of fetoplacental circulation, after which macrophages had migrated to the villi. These findings indicate that placental macrophages may assist the enucleation process of primitive RBCs in placental villi, implying an unexpectedly broad role for the placenta in embryonic hematopoiesis.


Blood | 2011

Regulated expression of microRNAs-126/126* inhibits erythropoiesis from human embryonic stem cells

Xinqiang Huang; Eric Gschweng; Ben Van Handel; Donghui Cheng; Hanna Mikkola; Owen N. Witte

MicroRNAs (miRs) play an important role in cell differentiation and maintenance of cell identity, but relatively little is known of their functional role in modulating human hematopoietic lineage differentiation. Human embryonic stem cells (hESCs) provide a model system to study early human hematopoiesis. We differentiated hESCs by embryoid body (EB) formation and compared the miR expression profile of undifferentiated hESCs to CD34(+) EB cells. miRs-126/126* were the most enriched of the 7 miRs that were up-regulated in CD34(+) cells, and their expression paralleled the kinetics of hematopoietic transcription factors RUNX1, SCL, and PU.1. To define the role of miRs-126/126* in hematopoiesis, we created hESCs overexpressing doxycycline-regulated miRs-126/126* and analyzed their hematopoietic differentiation. Induction of miRs-126/126* during both EB differentiation and colony formation reduced the number of erythroid colonies, suggesting an inhibitory role of miRs-126/126* in erythropoiesis. Protein tyrosine phosphatase, nonreceptor type 9 (PTPN9), a protein tyrosine phosphatase that is required for growth and expansion of erythroid cells, is one target of miR-126. PTPN9 restoration partially relieved the suppressed erythropoiesis caused by miRs-126/126*. Our results define an important function of miRs-126/126* in negative regulation of erythropoiesis, providing the first evidence for a role of miR in hematopoietic differentiation of hESCs.

Collaboration


Dive into the Ben Van Handel's collaboration.

Top Co-Authors

Avatar

Hanna Mikkola

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tonis Org

University of California

View shared research outputs
Top Co-Authors

Avatar

Ali Nsair

University of California

View shared research outputs
Top Co-Authors

Avatar

April D. Pyle

University of California

View shared research outputs
Top Co-Authors

Avatar

Denis Evseenko

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge