Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benedetta Isacchi is active.

Publication


Featured researches published by Benedetta Isacchi.


International Journal of Pharmaceutics | 2011

Improving solubility and chemical stability of natural compounds for medicinal use by incorporation into liposomes

Maria Coimbra; Benedetta Isacchi; Louis van Bloois; Javier Sastre Toraño; Aldo Ket; Xiaojie Wu; Femke Broere; Josbert M. Metselaar; Cristianne J.F. Rijcken; Gert Storm; Rita Bilia; Raymond M. Schiffelers

Natural bioactive compounds have been studied for a long time for their chemopreventive and therapeutic potential in several chronic inflammatory diseases, including cancer. However, their physicochemical properties generally result in poor chemical stability and lack of in vivo bioavailability. Very few human clinical trials have addressed absorption, distribution, metabolism, and excretion of these compounds in relation to efficacy. This limits the use of these valuable natural compounds in the clinic. In this study, we examined caffeic acid (derivatives), carvacrol (derivatives), thymol, pterostilbene (derivatives), and N-(3-oxo-dodecanoyl)-l-homoserine lactone. These are natural compounds with strong anti-inflammatory properties derived from plants and bacteria. However, these compounds have poor water solubility or are chemically unstable. To overcome these limitations we have prepared liposomal formulations. Our results show that lipophilic 3-oxo-C(12)-homoserine lactone and stilbene derivatives can be loaded into liposomal lipid bilayer with efficiencies of 50-70%. Thereby, the liposomes solubilize these compounds, allowing intravenous administration without use of solvents. When compounds could not be loaded into the lipid bilayer (carvacrol and thymol) or are rapidly extracted from the liposomes in the presence of serum albumin (3-oxo-C(12)-homoserine lactone and pterostilbene derivatives), derivatization of the compound into a water-soluble prodrug was shown to improve loading efficiency and encapsulation stability. The phosphate forms of carvacrol and pterostilbene were loaded into the aqueous interior of the liposomes and encapsulation was unaffected by the presence of serum albumin. Chemical instability of resveratrol was improved by liposome-encapsulation, preventing inactivating cis-trans isomerization. For caffeic acid, liposomal encapsulation did not prevent oxidation into a variety of products. Still, by derivatization into a phenyl ester, the compound could be stably encapsulated without chemical degradation. Despite the instability of liposome-association of 3-oxo-C(12)-homoserine lactone and resveratrol, intravenous administration of these compounds inhibited tumor growth for approximately 70% in a murine tumor model, showing that simple solubilization can have important therapeutic benefits.


Evidence-based Complementary and Alternative Medicine | 2014

Essential Oils Loaded in Nanosystems: A Developing Strategy for a Successful Therapeutic Approach

Anna Rita Bilia; Clizia Guccione; Benedetta Isacchi; Chiara Righeschi; Fabio Firenzuoli; Maria Camilla Bergonzi

Essential oils are complex blends of a variety of volatile molecules such as terpenoids, phenol-derived aromatic components, and aliphatic components having a strong interest in pharmaceutical, sanitary, cosmetic, agricultural, and food industries. Since the middle ages, essential oils have been widely used for bactericidal, virucidal, fungicidal, antiparasitical, insecticidal, and other medicinal properties such as analgesic, sedative, anti-inflammatory, spasmolytic, and locally anaesthetic remedies. In this review their nanoencapsulation in drug delivery systems has been proposed for their capability of decreasing volatility, improving the stability, water solubility, and efficacy of essential oil-based formulations, by maintenance of therapeutic efficacy. Two categories of nanocarriers can be proposed: polymeric nanoparticulate formulations, extensively studied with significant improvement of the essential oil antimicrobial activity, and lipid carriers, including liposomes, solid lipid nanoparticles, nanostructured lipid particles, and nano- and microemulsions. Furthermore, molecular complexes such as cyclodextrin inclusion complexes also represent a valid strategy to increase water solubility and stability and bioavailability and decrease volatility of essential oils.


European Journal of Pharmaceutics and Biopharmaceutics | 2012

Artemisinin and artemisinin plus curcumin liposomal formulations: Enhanced antimalarial efficacy against Plasmodium berghei-infected mice

Benedetta Isacchi; Maria Camilla Bergonzi; Margherita Grazioso; Chiara Righeschi; Alessia Pietretti; Carlo Severini; Anna Rita Bilia

The therapeutic efficacies of novel liposomal delivery systems based on artemisinin or artemisinin-based combination therapy with curcumin have been investigated and reported in this study. The developed liposomal formulations had proper characteristics as drug carriers for parental administration in terms of particle size, polydispersity, encapsulation efficacy and ζ-potential. Their physical and chemical stabilities were also evaluated. Furthermore, the in vivo antimalarial activity of artemisinin-based liposomal formulations was tested in Plasmodium berghei NK-65 infected mice, a suitable model for studying malaria because the infection presents structural, physiological and life cycle analogies with the human disease. Artemisinin, alone or in combination with curcumin, was encapsulated in conventional and PEGylated liposomes and its in vivo performance was assessed by comparison with the free drug. Mice were treated with artemisinin at the dosage of 50 mg/kg/days alone or plus curcumin as partner drug, administered at the dosage of 100 mg/kg/days. Artemisinin alone began to decrease parasitaemia levels only 7 days after the start of the treatment and it appeared to have a fluctuant trend in blood concentration which is reflected in the antimalarial effectiveness. By contrast, treatments with artemisinin-loaded conventional liposomes (A-CL), artemisinin-curcumin-loaded conventional liposomes (AC-CL), artemisinin-loaded PEGylated liposomes (A-PL), artemisinin-curcumin-loaded PEGylated liposomes (AC-PL) appeared to have an immediate antimalarial effect. Both nanoencapsulated artemisinin and artemisinin plus curcumin formulations cured all malaria-infected mice within the same post-inoculation period of time. Additionally, all formulations showed less variability in artemisinin plasma concentrations which suggested that A-CL, AC-CL, A-PL and AC-PL give a modified release of drug(s) and, as a consequence, a constant antimalarial effect during time. In particular, A-PL seems to give the most pronounced and statistically significant therapeutic effect in this murine model of malaria. The enhanced permanency in blood of A-PL suggests the use of these nanosystems as suitable passive targeted carriers for parasitic infections; this strong effect of formulation is added up to the mechanism of action of artemisinin which acts in the erythrocyte cycle stage of human host as a blood schizonticide.


Journal of Liposome Research | 2011

Conventional and long-circulating liposomes of artemisinin: preparation, characterization, and pharmacokinetic profile in mice

Benedetta Isacchi; Silvia Arrigucci; Giancarlo la Marca; Maria Camilla Bergonzi; Maria Giuliana Vannucchi; Andrea Novelli; Anna Rita Bilia

Artemisinin (qinghaosu), a unique endoperoxide sesquiterpene lactone isolated from Artemisia annua L., is a very active antimalarial drug, including severe and cerebral malaria. However, its therapeutical efficacy is limited due to its scarce bioavailability. In this article, artemisinin-loaded conventional and polyethylene glycol (PEGylated) liposomes were proposed as carriers to increase biopharmaceutical properties of the drug. Encapsulation efficacy was determined by high-performance liquid chromatography/diode array detection/electrospray ionization–mass spectrometry, dimensional analysis was performed by dynamic light scattering, and morphology was performed by trasmission electron microscopy. After dialysis, both liposomal formulations showed an encapsulation efficacy of more than 70%; mean diameter of all the artemisinin-loaded vesicles was approximately 130–140 nm. The polydispersity index of the formulations ranged from 0.2 to 0.3 and resulted as suitable for intraperitoneal (i.p.) administration. Pharmacokinetic profile and the main pharmacokinetic parameters of the carriers were evaluated in healthy mice i.p. Free artemisinin was rapidly cleared from plasma and hardly detected 1 hour after administration. Conversely, both liposomal formulations showed much longer blood-circulation time than free artemisinin; artemisinin was still detectable after 3 and 24 hours of administration, respectively, for conventional and PEGylated liposomes. AUC0–24h values were increased by approximately 6 times in both of the liposomal formulations, in comparison with free artemisinin. A strong effect of formulation on the half-life of artemisinin was enhanced by more than 5-fold by the incorporation of PEG into liposomes. Liposomes loaded with artemisinin, especially the long-circulating vesicles, could really represent a new strategy for developing smart, well-tolerated, and efficacious therapeutic nanocarriers to treat tumors, but could also be very useful to treat parasitic disease.


International Journal of Nanomedicine | 2014

Dendrosomal curcumin nanoformulation downregulates pluripotency genes via miR-145 activation in U87MG glioblastoma cells.

Maryam Tahmasebi Mirgani; Benedetta Isacchi; Majid Sadeghizadeh; Fabio Marra; Anna Rita Bilia; Seyed Javad Mowla; Farhood Najafi; Esmael Babaei

Glioblastoma is an invasive tumor of the central nervous system. Tumor recurrence resulting from ineffective current treatments, mainly due to the blood–brain barrier, highlights the need for innovative therapeutic alternatives. The recent availability of nanotechnology represents a novel targeted strategy in cancer therapy. Natural products have received considerable attention for cancer therapy because of general lower side effects. Curcumin is a new candidate for anticancer treatment, but its low bioavailability and water solubility represent the main disadvantages of its use. Here, curcumin was efficiently encapsulated in a nontoxic nanocarrier, termed dendrosome, to overcome these problems. Dendrosomal curcumin was prepared as 142 nm spherical structures with constant physical and chemical stability. The inhibitory role of dendrosomal curcumin on the proliferation of U87MG cells, a cellular model of glioblastoma, was evaluated by considering master genes of pluripotency and regulatory miRNA (microribonucleic acid). Methylthiazol tetrazolium assay and flow cytometry were used to detect the antiproliferative effects of dendrosomal curcumin. Annexin-V-FLUOS and caspase assay were used to quantify apoptosis. Real-time polymerase chain reaction was used to analyze the expression of OCT4 (octamer binding protein 4) gene variants (OCT4A, OCT4B, and OCT4B1), SOX-2 (SRY [sex determining region Y]-box 2), Nanog, and miR-145. Dendrosomal curcumin efficiently suppresses U87MG cells growth with no cytotoxicity related to dendrosome. Additionally, the accumulation of cells in the SubG1 phase was observed in a time- and dose-dependent manner as well as higher rates of apoptosis after dendrosomal curcumin treatment. Conversely, nonneoplastic cells were not affected by this formulation. Dendrosomal curcumin significantly decreased the relative expression of OCT4A, OCT4B1, SOX-2, and Nanog along with noticeable overexpression of miR-145 as the upstream regulator. This suggests that dendrosomal curcumin reduces the proliferation of U87MG cells through the downregulation of OCT4 (octamer binding protein 4) variants and SOX-2 (SRY [sex determining region Y]-box 2) in an miR-145-dependent manner.


BMC Pediatrics | 2010

Study protocol: safety and efficacy of propranolol in newborns with Retinopathy of Prematurity (PROP-ROP): ISRCTN18523491

Luca Filippi; Giacomo Cavallaro; Patrizio Fiorini; Marta Daniotti; Valentina Benedetti; Gloria Cristofori; Gabriella Araimo; Luca A. Ramenghi; Agostino La Torre; Pina Fortunato; Liliana Pollazzi; Giancarlo la Marca; Sabrina Malvagia; Paola Bagnoli; Chiara Ristori; Massimo Dal Monte; Anna Rita Bilia; Benedetta Isacchi; Sandra Furlanetto; Francesca Tinelli; Giovanni Cioni; Gianpaolo Donzelli; Silvia Osnaghi; Fabio Mosca

BackgroundDespite new therapeutic approaches have improved the prognosis of newborns with retinopathy of prematurity (ROP), an unfavourable structural and functional outcome still remains high. There is high pressure to develop new drugs to prevent and treat ROP. There is increasing enthusiasm for anti-VEGF drugs, but angiogenic inhibitors selective for abnormal blood vessels would be considered as an optimal treatment.In an animal experimental model of proliferative retinopathy, we have recently demonstrated that the pharmacological blockade of beta-adrenoreceptors improves retinal neovascularization and blood retinal barrier breakdown consequent to hypoxia. The purpose of this study is to evaluate the propranolol administration in preterm newborns suffering from a precocious phase of ROP in terms of safety and efficacy in counteracting the progression of retinopathy.Methods/DesignPreterm newborns (gestational age at birth lower than 32 weeks) with stage 2 ROP (zone II-III without plus) will be randomized, according to their gestational age, to receive propranolol added to standard treatment (treatment adopted by the ETROP Cooperative Group) or standard treatment alone. Propranolol will be administered until retinal vascularization will be completely developed, but not more than 90 days. Forty-four participants will be recruited into the study. To evaluate the safety of propranolol administration, cardiac and respiratory parameters will be continuously monitored. Blood samplings will be performed to check renal, liver and metabolic balance. To evaluate the efficacy of propranolol, the progression of the disease, the number of laser treatments or vitrectomies, the incidence of retinal detachment or blindness, will be evaluated by serial ophthalmologic examinations. Visual function will be evaluated by means of behavioural standardized tests.DiscussionThis pilot study is the first research that explores the possible therapeutic role of beta blockers in ROP. The objective of this research is highly ambitious: to find a treatment simple, inexpensive, well tolerated and with few adverse effects, able to counteract one of the major complications of the prematurity. Any favourable results of this research could open new perspectives and original scenarios about the treatment or the prevention of this and other proliferative retinopathies.Trial RegistrationCurrent Controlled Trials ISRCTN18523491; ClinicalTrials.gov Identifier NCT01079715; EudraCT Number 2010-018737-21


Food Chemistry | 2012

Identification and quantification of constituents of Gardenia jasminoides Ellis (Zhizi) by HPLC-DAD–ESI–MS

Maria Camilla Bergonzi; Chiara Righeschi; Benedetta Isacchi; Anna Rita Bilia

A simple, rapid and specific HPLC method was carried out for the analysis of characteristic constituents in Gardenia jasminoides Ellis (Zhizi), namely iridoids, caffeoyl quinic acid derivatives and crocins. The separation was successfully obtained using a C(18) column by gradient elution with mixtures of methanol and water as mobile phases; detection wavelength was set at 240 nm for iridoid glycosides, 315 nm for quinic acid derivatives and 438 nm for crocins. The analytical method was validated and the quantification of active compounds, namely iridoids, was performed. Linearity, precision, repeatability, stability, accuracy, limit of detection (LOD) and limit of quantification (LOQ) were also reported. This assay was successfully applied for qualitative and quantitative analysis of five commercial samples of G. jasminoides Ellis.


Experimental Eye Research | 2013

Eye drop propranolol administration promotes the recovery of oxygen-induced retinopathy in mice

Massimo Dal Monte; Giovanni Casini; Giancarlo la Marca; Benedetta Isacchi; Luca Filippi; Paola Bagnoli

The mouse model of oxygen-induced retinopathy (OIR) is a well-established model of retinopathy of prematurity (ROP), characterized by the abnormal formation of new blood vessels, which is similar to ROP. In this model, we have recently shown that subcutaneous (sc) administration of the non-selective beta-adrenergic receptor (β-AR) blocker propranolol ameliorates angiogenic processes in the retina when its effects are evaluated at postnatal day (PD) 17. In the present study, we investigated whether propranolol application as collyrium can promote the recovery of OIR. After propranolol administration on the eye, mice were first tested for retinal concentrations of propranolol as compared with those measured after sc or per os administration. Subsequently, we determined the effects of propranolol ophthalmic solutions, at the optimal dose for delivery, on VEGF, IGF-1, hypoxia-inducible factor (HIF)-1α, signal transducer and activator of transcription 3 (STAT3) and retinal neovascularization as assessed in both the superficial and the deep vascular plexuses. The results showed that 2% topical propranolol has an efficiency (in terms of final propranolol concentration in the retina) comparable to that of 20 mg/kg propranolol sc or per os and significantly higher than those observed with doses and administration routes that are currently used with children. Propranolol ophthalmic solutions reduced VEGF and IGF-1 up-regulation in response to hypoxia and drastically inhibited HIF-1α accumulation and STAT3 phosphorylation. As a result of its inhibitory effects on hypoxia-induced proangiogenic factors, propranolol significantly reduced retinal neovascularization in the superficial but not in the deep vascular plexus. An evaluation of retinal neovascularization at PD21 showed that propranolol was still effective in inhibiting OIR. These findings strengthen the hypothesis that β-AR blockade can efficiently counteract OIR and suggest that topical eye application of propranolol can represent an alternative delivery route to systemic administration thus avoiding the risk of associated complications and side effects that could make this drug unsafe in the ROP treatment.


Journal of Pharmacy and Pharmacology | 2011

Antihyperalgesic activity of verbascoside in two models of neuropathic pain

Benedetta Isacchi; Romina Iacopi; Maria Camilla Bergonzi; Carla Ghelardini; Nicoletta Galeotti; Monica Norcini; Elisa Vivoli; Franco Francesco Vincieri; Anna Rita Bilia

Objectives  This study reports on the rapid isolation of verbascoside from Lippia citriodora H.B.K. (Verbenaceae), an inexpensive and widespread source, and the evaluation of its antihyperalgesic activity.


European Journal of Pharmaceutical Sciences | 2011

Salvianolic acid B and its liposomal formulations: Anti-hyperalgesic activity in the treatment of neuropathic pain

Benedetta Isacchi; Valentina Fabbri; Nicoletta Galeotti; Maria Camilla Bergonzi; Anastasia Karioti; Carla Ghelardini; Maria Giuliana Vannucchi; Anna Rita Bilia

Salvianolic acid B (SalB) represents the most characteristic constituent of Salvia miltiorrhiza Bge. with a strong free radicals scavenger activity. This property may be useful in the treatment of some severe chronic diseases, where there is an imbalance of reactive oxygen species formation and where intracellular reactive oxygen and nitrogen species level can cause severe cell damage and even cell death. In particular, SalB can protect against the oxidative stress as well as the antioxidant superoxide dismutase and reduced activity of glutathione, important determinants of neuropathological and behavioural consequences in neuropathic pain. This is a chronic disease defined by the WHO as an untreatable illness because therapeutics are unsatisfactory in many cases and there is an urgent need to discover and develop novel active drugs. In the present work, SalB has been extracted and purified with an efficient and rapid method from the roots and rhizome of S. miltiorrhiza Bge. It was firstly submitted to pharmacological studies using the paw-pressure test, in an animal model of neuropathic pain where a peripheral mono neuropathy was produced by a chronic constriction injury of the sciatic nerve. SalB was effective against mechanical hyperalgesia when administered intraperitoneally at the dose of 100mg/kg, 15 min after administration. Due to the poor chemical stability and bioavailability of SalB, liposomes were developed as drug carriers for parental administration. SalB-loaded liposomes were characterised in terms of particle size, polydispersity index, encapsulation efficacy and morphology. According to the in vivo studies, encapsulation, especially into PEGylated liposomes, increased and prolonged the antihyperalgesic activity 30 min after i.p. administration and the effect was still significant at 45 min. Thus, PEGylated formulation ameliorated the performance of drug delaying, increasing and prolonging in time its antihyperalgesic effect.

Collaboration


Dive into the Benedetta Isacchi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge