Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benedict T. Green is active.

Publication


Featured researches published by Benedict T. Green.


Shock | 2003

Catecholamines modulate Escherichia coli O157:H7 adherence to murine cecal mucosa.

Chunsheng Chen; David R. Brown; Yonghong Xie; Benedict T. Green; Mark Lyte

Enterohemorrhagic Escherichia coli O157:H7 (EHEC) is an important food-borne pathogen. While the molecular mechanisms governing E. coli O157:H7 pathogenesis have been intensively investigated, the role of host factors has received less attention. In this study, we tested the hypothesis that the enteric catecholamines norepinephrine (NE) and dopamine (DA) modulate interactions of the cecal mucosa with E. coli O157:H7. Full-thickness sheets of murine cecum were mounted in Ussing chambers and short circuit current and tissue electrical conductance were periodically determined to assess active transepithelial ion transport and ionic permeability, respectively. Neurochemicals and stationary-phase E. coli O157:H7 were exposed respectively to the contraluminal and luminal aspects of the mucosa. Epithelial adherence of E. coli O157:H7 was quantified by a bacterial adhesion assay after 90 min of luminal E. coli O157:H7 exposure. DA and NE increased E. coli O157:H7 adherence relative to untreated control tissues at 50% effective concentrations of 3.8 &mgr;M and 4.2 &mgr;M respectively. Pretreatment of tissues with either the &agr;-adrenergic antagonist phentolamine or the &bgr;-adrenergic antagonist propranolol prevented the action of NE. The effect of DA was prevented by the dopamine antagonist haloperidol. The drugs did not impair tissue viability or transepithelial conductance. The present findings suggest that enteric catecholamines modulate E. coli O157:H7 adherence to the cecal epithelium. Conditions associated with elevated catecholamine release, such as stress exposure, may influence host susceptibility to E. coli O157:H7 infection.


Journal of Neuroimmunology | 2003

Neuromodulation of enteropathogen internalization in Peyer's patches from porcine jejunum

Benedict T. Green; Mark Lyte; Anjali Kulkarni-Narla; David R. Brown

Jejunal Peyers patches (JPP) are innervated sites of immune induction and enteropathogen infection. We investigated the role of enteric nerves in modulating pathogen entry into porcine JPP. Presumptive norepinephrine (NE)-containing nerve fibers were localized in JPP domes and follicle-associated villi by secondary immunofluorescence histochemistry. NE or the neuronal conduction blocker saxitoxin increased intracellular internalization of pathogenic Salmonella choleraesuis and Escherichia coli O157:H7, but not nonpathogenic E. coli, into isolated JPP mucosa. NE action was prevented by the alpha-adrenergic antagonist phentolamine. Withdrawal of enteric neural activity or NE administration appears to modulate JPP interactions with pathogenic bacteria.


Journal of Chemical Ecology | 2009

Swainsoninine Concentrations and Endophyte Amounts of Undifilum oxytropis in Different Plant Parts of Oxytropis sericea

Daniel Cook; Dale R. Gardner; Michael H. Ralphs; James A. Pfister; Kevin D. Welch; Benedict T. Green

Locoweeds are Astragalus and Oxytropis species that contain the toxic alkaloid swainsonine. Swainsonine accumulates in all parts of the plant with the highest concentrations found in the above ground parts. A fungal endophyte, Undifilum oxytropis, found in locoweed plant species, is responsible for the synthesis of swainsonine. By using quantitative PCR, the endophyte can be quantified in locoweed species. Endophyte amounts differ between plant parts and in some instances do not mirror the concentrations of swainsonine in the corresponding parts. Two groups of Oxytropis sericea were identified: one that accumulated high concentrations of swainsonine and another where swainsonine was not detected, or concentrations were near the detection threshold. The plants with high swainsonine concentrations had quantitatively higher amounts of endophyte. Alternatively, plants with low or no swainsonine detected had quantitatively lower endophyte amounts. In addition, swainsonine and endophyte concentrations were not distributed uniformly within the same plant when separated into stalks (leaves, scape(s), and flowers/pods). These findings provide evidence as to why plants in the same population accumulate different concentrations of swainsonine, and they have important implications for sampling of locoweed plants.


Journal of Virology | 2008

Scrapie Resistance in ARQ Sheep

William W. Laegreid; Michael L. Clawson; Michael P. Heaton; Benedict T. Green; Katherine I. O'Rourke; Donald P. Knowles

ABSTRACT Variation in the ovine prion protein amino acid sequence influences scrapie progression, with sheep homozygous for A136R154Q171 considered susceptible. This study examined the association of survival time of scrapie-exposed ARQ sheep with variation elsewhere in the ovine prion gene. Four single nucleotide polymorphism alleles were associated with prolonged survival. One nonsynonymous allele (T112) was associated with an additional 687 days of survival for scrapie-exposed sheep compared to M112 sheep (odds ratio, 42.5; P = 0.00014). The only two sheep homozygous for T112 (TARQ) did not develop scrapie, suggesting that the allelic effect may be additive. These results provide evidence that TARQ sheep are genetically resistant to development of classical scrapie.


Journal of Agricultural and Food Chemistry | 2011

Swainsonine and endophyte relationships in Astragalus mollissimus and Astragalus lentiginosus.

Daniel Cook; Dale R. Gardner; James A. Pfister; Michael H. Ralphs; Kevin D. Welch; Benedict T. Green

Locoweeds are defined as Astragalus and Oxytropis species that induce locoism due to the toxic alkaloid swainsonine. Swainsonine was detected in all parts of Astragalus lentiginosus and Astragalus mollissimus , with greater concentrations found in the aboveground parts. Undifilum oxytropis , a fungal endophyte responsible for the synthesis of swainsonine, was detected in all plant parts of A. lentiginosus and A. mollissimus. The amount of endophyte within a plant part does not always correspond to the concentration of swainsonine in the same part. Plants of A. mollissimus and A. lentiginosus can be divided into two chemotypes: those that contain swainsonine (>0.1%; chemotype 1) and those that contain little or no detectable swainsonine (<0.01%; chemotype 2). Chemotype 1 plants in both species had quantitatively higher amounts of endophyte compared to chemotype 2 plants. Swainsonine and endophyte amounts were not uniformly distributed within stalks of the same plant. For that reason, repeated sampling of stalks from the same plant during one growing season may provide misleading results. Sequence variants of U. oxytropis exist within populations of A. mollissimus, A. lentiginosus, and Oxytropis sericea and do not correlate with chemotype. These findings suggest several possible reasons for differential concentrations of swainsonine that will be tested in future work.


Chemical Research in Toxicology | 2008

Stereoselective Potencies and Relative Toxicities of Coniine Enantiomers

Stephen T. Lee; Benedict T. Green; Kevin D. Welch; James A. Pfister; Kip E. Panter

Coniine, one of the major toxic alkaloids present in poison hemlock ( Conium maculatum), occurs in two optically active forms. A comparison of the relative potencies of (+)- and (-)-coniine enantiomers has not been previously reported. In this study, we separated the enantiomers of coniine and determined the biological activity of each enantiomer in vitro and in vivo. The relative potencies of these enantiomers on TE-671 cells expressing human fetal nicotinic neuromuscular receptors had the rank order of (-)-coniine > (+/-)-coniine > (+)-coniine. A mouse bioassay was used to determine the relative lethalities of (-)-, (+/-)-, and (+)-coniine in vivo. The LD 50 values of the coniine enantiomers were 7.0, 7.7, and 12.1 mg/kg for the (-)-, (+/-)-, and (+)- forms of coniine, respectively. The results from this study demonstrate that there is a stereoselective difference in the in vitro potencies of the enantiomers of coniine that directly correlates with the relative toxicities of the enantiomers in vivo.


Neurotoxicology and Teratology | 2010

Actions of piperidine alkaloid teratogens at fetal nicotinic acetylcholine receptors.

Benedict T. Green; Stephen T. Lee; Kip E. Panter; Kevin D. Welch; Daniel Cook; James A. Pfister; William R. Kem

Teratogenic alkaloids are found in many species of plants including Conium maculatum L., Nicotiana glauca, Nicotiana tabaccum, and multiple Lupinus spp. Fetal musculoskeletal defects produced by alkaloids from these plants include arthrogyropisis, scoliosis, torticollis, kyposis, lordosis, and cleft palate. A pharmacodynamic comparison of the alkaloids ammodendrine, anabasine, anabaseine, anagyrine, and coniine in SH-SY5Y cells and TE-671 cells was made. These alkaloids and their enantiomers were more effective in depolarizing TE-671 cells which express the human fetal-muscle type nicotinic acetylcholine receptor (nAChR) relative to SH-SY5Y cells which predominately express autonomic nAChRs. The rank order of potency in TE-671 cells was: anabaseine>(+)-anabasine>(-)-anabasine > (+/-)-anabasine>anagyrine>(-)-coniine > (+/-)-coniine>(+)-coniine>(+/-)-ammodendrine>(+)-ammodendrine. The rank order potency in SH-SY5Y cells was: anabaseine>(+)-anabasine>(-)-coniine>(+)-coniine>(+)-ammodendrine>anagyrine>(-)-anabasine>(+/-)-coniine>(+/-)-anabasine>(-)-ammodendrine. The actions of these alkaloids at nAChRs in both cell lines could be distinguished by their maximum effects in depolarizing cell membrane potential. The teratogenic action of these compounds may be related to their ability to activate and subsequently desensitize nAChRs.


Journal of Animal Science | 2008

The effect of 7,8-methylenedioxylycoctonine-type diterpenoid alkaloids on the toxicity of methyllycaconitine in mice

K. D. Welch; Kip E. Panter; Dale R. Gardner; Benedict T. Green; James A. Pfister; Daniel Cook; Bryan L. Stegelmeier

Larkspur plants contain numerous norditerpenoid alkaloids, which include the 7,8-methylenedioxylycoctonine (MDL)-type alkaloids and the N-(methylsuccinimido)anthranoyllycoctonine (MSAL)-type alkaloids. The MSAL-type alkaloids are generally much more toxic (typically >20 times). Toxicity of many tall larkspurs, such as Delphinium barbeyi, has been attributed to its large concentration of MSAL-type alkaloids, including methyllycaconitine (MLA). However, the norditerpenoid alkaloids found in the greatest concentrations in most D. barbeyi populations are either deltaline or 14-O-acetyldictyocarpine (14-OAD), both less toxic MDL-type alkaloids. Although the individual toxicities of MLA, 14-OAD, and deltaline have been determined, the impact (additive or antagonistic) that large concentrations of deltaline or 14-OAD in the plant have on the toxicity of MLA is unknown. Consequently, the effect of MDL-type alkaloids on the toxicity of MLA was compared by using median lethal dose (LD(50)) and toxicokinetic profiles of the brainand muscle from mice receiving i.v. administration of these alkaloids, individually or in combination, at ratios of 1:1, 1:5, and 1:25 MLA to MDL-type alkaloids. The LD(50) for MLA alone was 4.4 +/- 0.7 mg/kg of BW, whereas the coadministration of MLA and deltaline at 1:1, 1:5, and 1:25 resulted in an LD(50) of 2.7, 2.5, and 1.9 mg/kg of BW, respectively. Similarly, the coadministration of MLA and 14-OAD at 1:1, 1:5, and 1:25 resulted in an LD(50) of 3.1, 2.2, and 1.5 mg/kg of BW, respectively. Coadministration of mixtures did not result in increased MLA bioavailability or alterations in clearance from the brain and muscle. Consequently, the increased toxicity of the mixtures was not a result of increased MLA bioavailability (based on the maximum concentrations observed) or alterations in MLA clearance from the brain and muscle, because these were unchanged. These results demonstrate that MDL-type alkaloids have an additive effect on MLA toxicity in mice and may also play a role in the overall toxicity of tall larkspur plants in cattle.


Food and Chemical Toxicology | 2012

Piperidine alkaloids: human and food animal teratogens.

Benedict T. Green; Stephen T. Lee; Kip E. Panter; David R. Brown

Piperidine alkaloids are acutely toxic to adult livestock species and produce musculoskeletal deformities in neonatal animals. These teratogenic effects include multiple congenital contracture (MCC) deformities and cleft palate in cattle, pigs, sheep, and goats. Poisonous plants containing teratogenic piperidine alkaloids include poison hemlock (Conium maculatum), lupine (Lupinus spp.), and tobacco (Nicotiana tabacum) [including wild tree tobacco (Nicotiana glauca)]. There is abundant epidemiological evidence in humans that link maternal tobacco use with a high incidence of oral clefting in newborns; this association may be partly attributable to the presence of piperidine alkaloids in tobacco products. In this review, we summarize the evidence for piperidine alkaloids that act as teratogens in livestock, piperidine alkaloid structure-activity relationships and their potential implications for human health.


American Journal of Veterinary Research | 2009

Effects of larkspur (Delphinium barbeyi) on heart rate and electrically evoked electromyographic response of the external anal sphincter in cattle.

Benedict T. Green; James A. Pfister; Daniel Cook; Kevin D. Welch; Bryan L. Stegelmeier; Stephen T. Lee; Dale R. Gardner; Edward L. Knoppel; Kip E. Panter

OBJECTIVE-To determine whether larkspur-derived N-(methylsuccinimido) anthranoyllycoctonine (MSAL)-type alkaloids alter heart rate and electrically evoked electromyographic (eEMG) response of the external anal sphincter (EAS) in cattle and whether these effects can be reversed by acetylcholinesterase inhibitors. ANIMALS-12 beef heifers and 4 cows. PROCEDURES-3 or 4 heifers were used in 1 or 2 of 7 dose-response experiments; heart rate and EAS eEMG response were assessed before and 24 hours after oral treatment with larkspur (doses equivalent to 0.5 to 15 mg of MSAL-type alkaloids/kg). In 3 subsequent experiments, 3 heifers (1 of which was replaced with another heifer in the control experiment) each received 10 mg of MSAL-type alkaloids/kg and were injected IV with physostigmine (0.04 mg/kg), neostigmine (0.04 mg/kg), or saline (0.9% NaCl) solution 24 hours later, prior to assessment. Additionally, EAS eEMG response was measured in 4 cows before and after epidural administration of 2% lidocaine hydrochloride. RESULTS-Larkspur-treated heifers developed dose-related increases in heart rate and decreases in EAS eEMG response. Twenty-four hours after administration of MSAL-type alkaloids, neostigmine decreased heart rate but did not affect eEMG response, whereas physostigmine did not affect heart rate but caused a 2-fold increase in eEMG response. In cows, epidural anesthesia did not alter eEMG response, suggesting that transdermal stimulation of the EAS pudendal innervation did not occur. CONCLUSIONS AND CLINICAL RELEVANCE-In cattle, cardiac effects and muscle weakness or loss of EAS eEMG response induced by larkspur-derived MSAL-type alkaloids were reversed by neostigmine or physostigmine, respectively. Treatment with anticholinesterase inhibitors may alter the clinical effects of larkspur poisoning in cattle.

Collaboration


Dive into the Benedict T. Green's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dale R. Gardner

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Kevin D. Welch

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Daniel Cook

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Kip E. Panter

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Stephen T. Lee

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Bryan L. Stegelmeier

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

K. D. Welch

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

T. Zane Davis

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge