Bénédicte Cesselin
Institut national de la recherche agronomique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bénédicte Cesselin.
Journal of Bacteriology | 2001
Patrick Duwat; Sophie Sourice; Bénédicte Cesselin; Gilles Lamberet; Karin Vido; Philippe Gaudu; Yves Le Loir; Florent Violet; Pascal Loubiere; Alexandra Gruss
Oxygen is a major determinant of both survival and mortality of aerobic organisms. For the facultative anaerobe Lactococcus lactis, oxygen has negative effects on both growth and survival. We show here that oxygen can be beneficial to L. lactis if heme is present during aerated growth. The growth period is extended and long-term survival is markedly improved compared to results obtained under the usual fermentation conditions. We considered that improved growth and survival could be due to the capacity of L. lactis to undergo respiration. To test this idea, we confirmed that the metabolic behavior of lactococci in the presence of oxygen and hemin is consistent with respiration and is most pronounced late in growth. We then used a genetic approach to show the following. (i) The cydA gene, encoding cytochrome d oxidase, is required for respiration and plays a direct role in oxygen utilization. cydA expression is induced late in growth under respiration conditions. (ii) The hemZ gene, encoding ferrochelatase, which converts protoporphyrin IX to heme, is needed for respiration if the precursor, rather than the final heme product, is present in the medium. Surprisingly, survival improved by respiration is observed in a superoxide dismutase-deficient strain, a result which emphasizes the physiological differences between fermenting and respiring lactococci. These studies confirm respiratory metabolism in L. lactis and suggest that this organism may be better adapted to respiration than to traditional fermentative metabolism.
Microbiology | 2002
Anne-Marie Crutz-Le Coq; Bénédicte Cesselin; Jacqueline Commissaire; Jamila Anba
The complete 31754 bp genome of bIL170, a virulent bacteriophage of Lactococcus lactis belonging to the 936 group, was analysed. Sixty-four ORFs were predicted and the function of 16 of them was assigned by significant homology to proteins in databases. Three putative homing endonucleases of the HNH family were found in the early region. An HNH endonuclease with zinc-binding motif was identified in the late cluster, potentially being part of the same functional module as terminase. Three putative structural proteins were analysed in detail and show interesting features among dairy phages. Notably, gpl12 (putative fibre) and gpl20 (putative baseplate protein) of bIL170 are related by at least one of their domains to a number of multi-domain proteins encoded by lactococcal or streptococcal phages. A 110- to 150-aa-long hypervariable domain flanked by two conserved motifs of about 20 aa was identified. The analysis presented here supports the participation of some of these proteins in host-range determination and suggests that specific adsorption to the host may involve a complex multi-component system. Divergences in the genome of phages of the 936 group, that may have important biological properties, were noted. Insertions/deletions of units of one or two ORFs were the main source of divergence in the early clusters of the two entirely sequenced phages, bIL170 and sk1. An exchange of fragments probably affected the regions containing the putative origin of replication. It led to the absence in bIL170 of the direct repeats recognized in sk1 and to the presence of different ORFs in the ori region. Shuffling of protein domains affected the endolysin (putative cell-wall binding part), as well as gpl12 and gpl20.
Molecular Microbiology | 2004
Lahcen Rezaïki; Bénédicte Cesselin; Yuji Yamamoto; Karin Vido; Evelien Van West; Philippe Gaudu; Alexandra Gruss
The impact of oxygen on a cell is strongly dependent on its metabolic state: survival in oxygen of free‐living Lactococcus lactis, best known as a fermenting, acidifying bacterium, is generally poor. In contrast, if haem is present, L. lactis uses oxygen to switch from fermentation to respiration metabolism late in growth, resulting in spectacularly improved long‐term survival. Oxygen is thus beneficial rather than detrimental for survival if haem is provided. We examined the effects of respiration on oxygen toxicity by comparing integrity of stationary phase cells after aerated growth without and with added haem. Aeration (no haem) growth caused considerable cellular protein and chromosomal DNA damage, increased spontaneous mutation frequencies and poor survival of recA mutants. These phenotypes were greatly diminished when haem was present, indicating that respiration constitutes an efficient barrier against oxidative stress. Using the green fluorescent protein as an indicator of intracellular oxidation state, we showed that aeration growth provokes significantly greater oxidation than respiration growth. Iron was identified as a main contributor to mortality and DNA degradation in aeration growth. Our results point to two features of respiration growth in lactococci that are responsible for maintaining low oxidative damage: One is a more reduced intracellular state, which is because of efficient oxygen elimination by respiration. The other is a higher pH resulting from the shift from acid‐forming fermentation to respiration metabolism. These results have relevance to other bacteria whose respiration capacity depends on addition of exogenous haem.
Current Opinion in Biotechnology | 2011
Delphine Lechardeur; Bénédicte Cesselin; Annabelle Fernandez; Gilles Lamberet; Christel Garrigues; Martin Bastian Pedersen; Philippe Gaudu; Alexandra Gruss
Lactic acid bacteria (LAB) are a phylogenetically diverse group named for their main attribute in food fermentations, that is, production of lactic acid. However, several LAB are genetically equipped for aerobic respiration metabolism when provided with exogenous sources of heme (and menaquinones for some species). Respiration metabolism is energetically favorable and leads to less oxidative and acid stress during growth. As a consequence, the growth and survival of several LAB can be dramatically improved under respiration-permissive conditions. Respiration metabolism already has industrial applications for the production of dairy starter cultures. In view of the growth and survival advantages conferred by respiration, and the availability of heme and menaquinones in natural environments, we recommend that respiration be accepted as a part of the natural lifestyle of numerous LAB.
Molecular Microbiology | 2013
Aurélie Derré-Bobillot; Yuji Yamamoto; Pascale Kharrat; Elizabeth Couvé; Violette Da Cunha; Patrice Decker; Marie-Christophe Boissier; Frédéric Escartin; Bénédicte Cesselin; Philippe Langella; Luis G. Bermúdez-Humarán; Philippe Gaudu
Most bacteria of the genus Streptococcus are opportunistic pathogens, and some of them produce extracellular DNases, which may be important for virulence. Genome analyses of Streptococcus agalactiae (GBS) neonate isolate NEM316 revealed the presence of seven genes putatively encoding secreted DNases, although their functions, if any, are unknown. In this study, we observed that respiration growth of GBS led to the extracellular accumulation of a putative nuclease, identified as being encoded by the gbs0661 gene. When overproduced in Lactococcus lactis, the protein was found to be a divalent cation‐requiring, pH‐stable and heat‐stable nuclease that we named Nuclease A (NucA). Substitution of the histidine148 by alanine reduced nuclease activity of the GBS wild‐type strain, indicating that NucA is the major nuclease ex vivo. We determined that GBS is able to degrade the DNA matrix comprising the neutrophil extracellular trap (NET). The nucAH148A mutant was impaired for this function, implicating NucA in the virulence of GBS. In vivo infection studies confirmed that NucA is required for full infection, as the mutant strain allowed increased bacterial clearance from lung tissue and decreased mortality in infected mice. These results show that NucA is involved in NET escape and is needed for full virulence.
International Journal of Food Microbiology | 2000
Patrick Duwat; Bénédicte Cesselin; Sophie Sourice; Alexandra Gruss
The dairy organism, Lactococcus lactis, is continuously exposed to stress conditions generated during industrial processes. To identify the mechanisms that confer resistance to the lethal effects of oxygen and thermal stress, we isolated resistant strains by insertional mutagenesis. Mutated genes were identified and mutations were shown to confer resistance to multiple stresses (including non-selected stresses such as carbon starvation). Our results revealed that metabolic flux plays an important role in L. lactis stress response, and suggested that phosphate and guanine pools may be intracellular stress sensors. As previously shown, we also observed an increase of stress resistance during the stationary phase. We have evidence that stationary phase actually initiates very early during growth. Taken together, these data show that the stationary phase is a very complex system with multiple participants interacting altogether. These results reinforce the idea of the interdependence of stress response and the intimate relation between metabolic flux and stress responses in L. lactis.
Journal of Biological Chemistry | 2012
Delphine Lechardeur; Bénédicte Cesselin; Ursula Liebl; Marten H. Vos; Annabelle Fernandez; Célia Brun; Alexandra Gruss; Philippe Gaudu
Background: Heme is an essential cofactor yet toxic in free form, necessitating strict intracellular control. Results: A heme sensor regulates the conserved hrtBA genes in Lactococcus lactis, whose products mediate heme efflux. Conclusion: L. lactis controls heme homeostasis by sensing intracellular heme and activating heme efflux. Significance: The use of an intracellular heme sensor to control heme efflux constitutes a novel paradigm for bacterial heme homeostasis. Most commensal and food bacteria lack heme biosynthesis genes. For several of these, the capture of environmental heme is a means of activating aerobic respiration metabolism. Our previous studies in the Gram-positive bacterium Lactococcus lactis showed that heme exposure strongly induced expression of a single operon, called here hrtRBA, encoding an ortholog of the conserved membrane hrt (heme-regulated transporter) and a unique transcriptional regulator that we named HrtR. We show that HrtR expressed as a fusion protein is a heme-binding protein. Heme iron interaction with HrtR is non-covalent, hexacoordinated, and involves two histidines, His-72 and His-149. HrtR specifically binds a 15-nt palindromic sequence in the hrtRBA promoter region, which is needed for hrtRBA repression. HrtR-DNA binding is abolished by heme addition, which activates expression of the HrtB-HrtA (HrtBA) transporter in vitro and in vivo. The use of HrtR as an intracellular heme sensor appears to be conserved among numerous commensal bacteria, in contrast with numerous Gram-positive pathogens that use an extracellular heme-sensing system, HssRS, to regulate hrt. Finally, we show for the first time that HrtBA permease controls heme toxicity by its direct and specific efflux. The use of an intracellular heme sensor to control heme efflux constitutes a novel paradigm for bacterial heme homeostasis.
Microbiology | 2009
Bénédicte Cesselin; Djae Ali; Jean-Jacques Gratadoux; Philippe Gaudu; Patrick Duwat; Alexandra Gruss; Meriem El Karoui
Numerous strategies allowing bacteria to detect and respond to oxidative conditions depend on the cell redox state. Here we examined the ability of Lactococcus lactis to survive aerobically in the presence of the reducing agent dithiothreitol (DTT), which would be expected to modify the cell redox state and disable the oxidative stress response. DTT inhibited L. lactis growth at 37 degrees C in aerobic conditions, but not in anaerobiosis. Mutants selected as DTT resistant all mapped to the pstFEDCBA locus, encoding a high-affinity phosphate transporter. Transcription of pstFEDCBA and a downstream putative regulator of stress response, phoU, was deregulated in a pstA strain, but amounts of major oxidative stress proteins were unchanged. As metals participate in oxygen radical formation, we compared metal sensitivity of wild-type and pstA strains. The pstA mutant showed approximately 100-fold increased resistance to copper and zinc. Furthermore, copper or zinc addition exacerbated the sensitivity of a wild-type L. lactis strain to DTT. Inactivation of pstA conferred a more general resistance to oxidative stress, alleviating the oxygen- and thermo-sensitivity of a clpP mutant. This study establishes a role for the pst locus in metal homeostasis, suggesting that pst inactivation lowers intracellular reactivity of copper and zinc, which would limit bacterial sensitivity to oxygen.
Archive | 2011
Bénédicte Cesselin; Aurélie Derré-Bobillot; Annabelle Fernandez; Gilles Lamberet; Delphine Lechardeur; Yuji Yamamoto; Martin Bastian Pedersen; Christel Garrigues; Alexandra Gruss; Philippe Gaudu
Lactic acid bacteria (LAB) include those designated as generally recognized as safe (LABGRAS), used in dairy industries, and opportunistic pathogens like most of the streptococceae. They are usually classified as strict fermentative bacteria producing mainly lactic acid as the end product of carbohydrate catabolism and they are oxygen-sensitive. Oxygen, in conjunction with the reducing environment, can generate highly toxic byproducts: superoxide (O2.−), hydrogen peroxide (H2O2), and hydroxyl radical (HO.). These species damage macromolecules like enzymes, leading to growth arrest or mortality in LAB. However, in the last decade, a basic functional oxygen-dependent respiratory chain has been identified in several LAB, suggesting that they might be better adapted to an oxygen environment than we thought previously. Interestingly, LAB are defective in their capacity to synthesize heme (and quinone in some LAB), both essential cofactors in respiratory chains. This chapter focuses on recent studies of oxygen toxicity, the respiratory metabolism in LAB, exemplified by Lactococcus lactis, and the signaling pathway associated with oxidative stress responses.
Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2002
Philippe Gaudu; Karin Vido; Bénédicte Cesselin; Saulius Kulakauskas; Josselyne Tremblay; Lahcen Rezaïki; Gilles Lamberet; Sophie Sourice; Patrick Duwat; Alexandra Gruss