Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bénédicte Desvoyes is active.

Publication


Featured researches published by Bénédicte Desvoyes.


Plant Physiology | 2005

Cell Type-Specific Role of the Retinoblastoma/E2F Pathway during Arabidopsis Leaf Development

Bénédicte Desvoyes; Elena Ramirez-Parra; Qi Xie; Nam-Hai Chua; Crisanto Gutierrez

Organogenesis in plants is almost entirely a postembryonic process. This unique feature implies a strict coupling of cell proliferation and differentiation, including cell division, arrest, cell cycle reactivation, endoreplication, and differentiation. The plant retinoblastoma-related (RBR) protein modulates the activity of E2F transcription factors to restrict cell proliferation. Arabidopsis contains a single RBR gene, and its loss of function precludes gamete formation and early development. To determine the relevance of the RBR/E2F pathway during organogenesis, outside its involvement in cell division, we have used an inducible system to inactivate RBR function and release E2F activity. Here, we have focused on leaves where cell proliferation and differentiation are temporally and developmentally regulated. Our results reveal that RBR restricts cell division early during leaf development when cell proliferation predominates, while it regulates endocycle occurrence at later stages. Moreover, shortly after leaving the cell cycle, most of leaf epidermal pavement cells retain the ability to reenter the cell cycle and proliferate, but maintain epidermal cell fate. On the contrary, mesophyll cells in the inner layers do not respond in this way to RBR loss of activity. We conclude that there exists a distinct response of different cells to RBR inactivation in terms of maintaining the balance between cell division and endoreplication during Arabidopsis (Arabidopsis thaliana) leaf development.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Genome-wide analysis of histone H3.1 and H3.3 variants in Arabidopsis thaliana

Hume Stroud; Sofía Otero; Bénédicte Desvoyes; Elena Ramirez-Parra; Steven E. Jacobsen; Crisanto Gutierrez

Nucleosomes package eukaryotic DNA and are composed of four different histone proteins, designated H3, H4, H2A, and H2B. Histone H3 has two main variants, H3.1 and H3.3, which show different genomic localization patterns in animals. We profiled H3.1 and H3.3 variants in the genome of the plant Arabidopsis thaliana and found that the localization of these variants shows broad similarity in plants and animals, along with some unique features. H3.1 was enriched in silent areas of the genome, including regions containing the repressive chromatin modifications H3 lysine 27 methylation, H3 lysine 9 methylation, and DNA methylation. In contrast, H3.3 was enriched in actively transcribed genes, especially peaking at the 3′ end of genes, and correlated with histone modifications associated with gene activation, such as histone H3 lysine 4 methylation and H2B ubiquitylation, as well as RNA Pol II occupancy. Surprisingly, both H3.1 and H3.3 were enriched on defined origins of replication, as was overall nucleosome density, suggesting a novel characteristic of plant origins. Our results are broadly consistent with the hypothesis that H3.1 acts as the canonical histone that is incorporated during DNA replication, whereas H3.3 acts as the replacement histone that can be incorporated outside of S-phase during chromatin-disrupting processes like transcription.


Plant Physiology | 2012

Auxin and Epigenetic Regulation of SKP2B, an F-Box That Represses Lateral Root Formation

Concepción Manzano; Elena Ramirez-Parra; Ilda Casimiro; Sofía Otero; Bénédicte Desvoyes; Bert De Rybel; Tom Beeckman; Pedro Casero; Crisanto Gutierrez; Juan Carlos del Pozo

In plants, lateral roots originate from pericycle founder cells that are specified at regular intervals along the main root. Here, we show that Arabidopsis (Arabidopsis thaliana) SKP2B (for S-Phase Kinase-Associated Protein2B), an F-box protein, negatively regulates cell cycle and lateral root formation as it represses meristematic and founder cell divisions. According to its function, SKP2B is expressed in founder cells, lateral root primordia and the root apical meristem. We identified a novel motif in the SKP2B promoter that is required for its specific root expression and auxin-dependent induction in the pericycle cells. Next to a transcriptional control by auxin, SKP2B expression is regulated by histone H3.1/H3.3 deposition in a CAF-dependent manner. The SKP2B promoter and the 5′ end of the transcribed region are enriched in H3.3, which is associated with active chromatin states, over H3.1. Furthermore, the SKP2B promoter is also regulated by H3 acetylation in an auxin- and IAA14-dependent manner, reinforcing the idea that epigenetics represents an important regulatory mechanism during lateral root formation.


Seminars in Cell & Developmental Biology | 2008

Chromatin dynamics during the plant cell cycle

María de la Paz Sánchez; Elena Caro; Bénédicte Desvoyes; Elena Ramirez-Parra; Crisanto Gutierrez

Cell cycle progression depends on a highly regulated series of events of which transcriptional control plays a major role. In addition, during the S-phase not only DNA but chromatin as a whole needs to be faithfully duplicated. Therefore, both nucleosome dynamics as well as local changes in chromatin organization, including introduction and/or removal of covalent DNA and histone modifications, at genes with a key role in cell proliferation, are of primary relevance. Chromatin duplication during the S-phase and the chromosome segregation during mitosis are cell cycle stages critical for maintenance of epigenetic marks or for allowing the daughter products to acquire a distinct epigenetic landscape and, consequently, a unique cell fate decision. These aspects of chromatin dynamics together with the strict coupling of cell proliferation, cell differentiation and post-embryonic organogenesis have a profound impact on plant growth, development and response to external signals.


Heredity | 2010

Impact of nucleosome dynamics and histone modifications on cell proliferation during Arabidopsis development

Bénédicte Desvoyes; María de la Paz Sánchez; Elena Ramirez-Parra; Crisanto Gutierrez

Eukaryotic chromatin is a highly structured macromolecular complex of which DNA is wrapped around a histone-containing core. DNA can be methylated at specific C residues and each histone molecule can be covalently modified at a large variety of amino acids in both their tail and core domains. Furthermore, nucleosomes are not static entities and both their position and histone composition can also vary. As a consequence, chromatin behaves as a highly dynamic cellular component with a large combinatorial complexity beyond DNA sequence that conforms the epigenetic landscape. This has key consequences on various developmental processes such as root and flower development, gametophyte and embryo formation and response to the environment, among others. Recent evidence indicate that posttranslational modifications of histones also affect cell cycle progression and processes depending on a correct balance of proliferating cell populations, which in the context of a developing organisms includes cell cycle, stem cell dynamics and the exit from the cell cycle to endoreplication and cell differentiation. The impact of epigenetic modifications on these processes will be reviewed here.


Frontiers in Plant Science | 2014

Looking at plant cell cycle from the chromatin window

Bénédicte Desvoyes; María Fernández-Marcos; Joana Sequeira-Mendes; Sofía Otero; Zaida Vergara; Crisanto Gutierrez

The cell cycle is defined by a series of complex events, finely coordinated through hormonal, developmental and environmental signals, which occur in a unidirectional manner and end up in producing two daughter cells. Accumulating evidence reveals that chromatin is not a static entity throughout the cell cycle. In fact, there are many changes that include nucleosome remodeling, histone modifications, deposition and exchange, among others. Interestingly, it is possible to correlate the occurrence of several of these chromatin-related events with specific processes necessary for cell cycle progression, e.g., licensing of DNA replication origins, the E2F-dependent transcriptional wave in G1, the activation of replication origins in S-phase, the G2-specific transcription of genes required for mitosis or the chromatin packaging occurring in mitosis. Therefore, an emerging view is that chromatin dynamics must be considered as an intrinsic part of cell cycle regulation. In this article, we review the main features of several key chromatin events that occur at defined times throughout the cell cycle and discuss whether they are actually controlling the transit through specific cell cycle stages.


Journal of Experimental Botany | 2014

Novel roles of plant RETINOBLASTOMA-RELATED (RBR) protein in cell proliferation and asymmetric cell division

Bénédicte Desvoyes; Alex de Mendoza; Iñaki Ruiz-Trillo; Crisanto Gutierrez

The retinoblastoma (Rb) protein was identified as a human tumour suppressor protein that controls various stages of cell proliferation through the interaction with members of the E2F family of transcription factors. It was originally thought to be specific to animals but plants contain homologues of Rb, called RETINOBLASTOMA-RELATED (RBR). In fact, the Rb-E2F module seems to be a very early acquisition of eukaryotes. The activity of RBR depends on phosphorylation of certain amino acid residues, which in most cases are well conserved between plant and animal proteins. In addition to its role in cell-cycle progression, RBR has been shown to participate in various cellular processes such as endoreplication, transcriptional regulation, chromatin remodelling, cell growth, stem cell biology, and differentiation. Here, we discuss the most recent advances to define the role of RBR in cell proliferation and asymmetric cell division. These and other reports clearly support the idea that RBR is used as a landing platform of a plethora of cellular proteins and complexes to control various aspects of cell physiology and plant development.


Biochimica et Biophysica Acta | 2011

A chromatin perspective of plant cell cycle progression.

Celina Costas; Bénédicte Desvoyes; Crisanto Gutierrez

The finely regulated series of events that span from the birth of a cell to the production of two new born cells encompass the cell cycle. Cell cycle progression occurs in a unidirectional manner and requires passing through a number of stages in response to cellular, developmental and environmental cues. In addition to these signaling cascades, transcriptional regulation plays a major role and acts coordinately with genome duplication during S-phase and chromosome segregation during mitosis. In this context, chromatin is revealing as a highly dynamic and major player in cell cycle regulation not only owing to the changes that occur as a consequence of cell cycle progression but also because some specific chromatin modifications are crucial to move across the cell cycle. These are particularly relevant for controlling transcriptional activation and repression as well as initiation of DNA replication and chromosome compaction. As a consequence the epigenetic landscape of a proliferating cell is very complex throughout the cell cycle. These aspects of chromatin dynamics together with the impact of epigenetic modifications on cell proliferation will be discussed in this article. This article is part of a Special Issue entitled: Epigenetic Control of cellular and developmental processes in plants.


Plant Journal | 2014

Extensive amplification of the E2F transcription factor binding sites by transposons during evolution of Brassica species

Elizabeth Hénaff; Cristina Vives; Bénédicte Desvoyes; Ankita Chaurasia; Jordi Payet; Crisanto Gutierrez; Josep Casacuberta

Transposable elements (TEs) are major players in genome evolution. The effects of their movement vary from gene knockouts to more subtle effects such as changes in gene expression. It has recently been shown that TEs may contain transcription factor binding sites (TFBSs), and it has been proposed that they may rewire new genes into existing transcriptional networks. However, little is known about the dynamics of this process and its effect on transcription factor binding. Here we show that TEs have extensively amplified the number of sequences that match the E2F TFBS during Brassica speciation, and, as a result, as many as 85% of the sequences that fit the E2F TFBS consensus are within TEs in some Brassica species. We show that these sequences found within TEs bind E2Fa in vivo, which indicates a direct effect of these TEs on E2F-mediated gene regulation. Our results suggest that the TEs located close to genes may directly participate in gene promoters, whereas those located far from genes may have an indirect effect by diluting the effective amount of E2F protein able to bind to its cognate promoters. These results illustrate an extreme case of the effect of TEs in TFBS evolution, and suggest a singular way by which they affect host genes by modulating essential transcriptional networks.


Cytogenetic and Genome Research | 2014

Histone H3 Dynamics in Plant Cell Cycle and Development

Sofía Otero; Bénédicte Desvoyes; Crisanto Gutierrez

Chromatin is a macromolecular complex where DNA associates with histone proteins and a variety of non-histone proteins. Among the 4 histone types present in nucleosomes, histone H3 is encoded by a large number of genes in most eukaryotic species and is the histone that contains the largest variety of potential post-translational modifications in the N-terminal amino acid residues. In addition to centromeric histone H3, 2 major types of histone H3 exist, namely the canonical H3.1 and the variant H3.3. In this article, we review the most recent observations on the distinctive features of plant H3 proteins in terms of their expression and dynamics during the cell cycle and at various developmental stages. We also include a discussion on the histone H3 chaperones that actively participate in H3 deposition, in particular CAF-1, HIRA and ASF1, and on the putative plant homologs of human ATRX and DEK chaperones. Accumulating evidence confirms that the balanced deposition of H3.1 and H3.3 is of primary relevance for cell differentiation during plant organogenesis.

Collaboration


Dive into the Bénédicte Desvoyes's collaboration.

Top Co-Authors

Avatar

Crisanto Gutierrez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Elena Ramirez-Parra

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Sofía Otero

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

María de la Paz Sánchez

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Joana Sequeira-Mendes

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Zaida Vergara

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Juan Carlos del Pozo

Technical University of Madrid

View shared research outputs
Top Co-Authors

Avatar

María Fernández-Marcos

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Celina Costas

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Concepción Manzano

Technical University of Madrid

View shared research outputs
Researchain Logo
Decentralizing Knowledge