Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benedicte R. Albrectsen is active.

Publication


Featured researches published by Benedicte R. Albrectsen.


Tree Genetics & Genomes | 2008

Natural phenological variation in aspen (Populus tremula) : the SwAsp collection

Virginia Luquez; David Hall; Benedicte R. Albrectsen; Jan Karlsson; Pär K. Ingvarsson; Stefan Jansson

The genus Populus is currently the main model system for genetic, genomic, and physiological research in trees. Phenotypic variation in aspen (Populustremula) populations growing in different environments across Sweden is expected to reflect genetic variation that is important for local adaptation. To analyze such natural phenotypic and genetic variation, the Swedish Aspen (SwAsp) Collection was established. Trees were taken from 12 different populations across Sweden, from 56° to 66° latitude north and planted in two common gardens in Ekebo (55.9°N) and Sävar (63.4°N). Data related to phenological and growth traits were collected during the second year of growth. Some traits like the date of bud set and leaf area duration showed strong clinal variation patterns with latitude in both field trials, but the date of bud flush did not change along a latitudinal cline. The phenological traits showed moderate within-populations heritabilities, although growth traits showed weaker clinal patterns and lower heritabilities than the phenological traits. This research forms the starting point for the development of the SwAsp collection, a resource facilitating analysis of the natural genetic variation in aspen, the elucidation of the structure and dynamics of aspen populations, and the future identification of the genes controlling adaptive traits using association mapping of selected candidate genes.


Ecology Letters | 2013

Geographic structure in metabolome and herbivore community co‐occurs with genetic structure in plant defence genes

Carolina Bernhardsson; Kathryn M. Robinson; Ilka Nacif Abreu; Stefan Jansson; Benedicte R. Albrectsen; Pär K. Ingvarsson

Plant-herbivore interactions vary across the landscape and have been hypothesised to promote local adaption in plants to the prevailing herbivore regime. Herbivores that feed on European aspen (Populus tremula) change across regional scales and selection on host defence genes may thus change at comparable scales. We have previously observed strong population differentiation in a set of inducible defence genes in Swedish P. tremula. Here, we study the geographic patterns of abundance and diversity of herbivorous insects, the untargeted metabolome of the foliage and genetic variation in a set of wound-induced genes and show that the geographic structure co-occurs in all three data sets. In response to this structure, we observe local maladaptation of herbivores, with fewer herbivores on local trees than on trees originated from more distant localities. Finally, we also identify 28 significant associations between single nucleotide polymorphisms SNPs from defence genes and a number of the herbivore traits and metabolic profiles.


PLOS ONE | 2012

Genetic Variation in Functional Traits Influences Arthropod Community Composition in Aspen (Populus tremula L.)

Kathryn M. Robinson; Pär K. Ingvarsson; Stefan Jansson; Benedicte R. Albrectsen

We conducted a study of natural variation in functional leaf traits and herbivory in 116 clones of European aspen, Populus tremula L., the Swedish Aspen (SwAsp) collection, originating from ten degrees of latitude across Sweden and grown in a common garden. In surveys of phytophagous arthropods over two years, we found the aspen canopy supports nearly 100 morphospecies. We identified significant broad-sense heritability of plant functional traits, basic plant defence chemistry, and arthropod community traits. The majority of arthropods were specialists, those coevolved with P. tremula to tolerate and even utilize leaf defence compounds. Arthropod abundance and richness were more closely related to plant growth rates than general chemical defences and relationships were identified between the arthropod community and stem growth, leaf and petiole morphology, anthocyanins, and condensed tannins. Heritable genetic variation in plant traits in young aspen was found to structure arthropod community; however no single trait drives the preferences of arthropod folivores among young aspen genotypes. The influence of natural variation in plant traits on the arthropod community indicates the importance of maintaining genetic variation in wild trees as keystone species for biodiversity. It further suggests that aspen can be a resource for the study of mechanisms of natural resistance to herbivores.


Evolution | 2006

FITNESS AND GENETIC ARCHITECTURE OF PARENT AND HYBRID WILLOWS IN COMMON GARDENS

Robert S. Fritz; Cris G. Hochwender; Benedicte R. Albrectsen; Mary Ellen Czesak

Abstract Models of hybrid zone dynamics incorporate different patterns of hybrid fitness relative to parental species fitness. An important but understudied source of variation underlying these fitness differences is the environment. We investigated the performance of two willow species and their F1, F2, and backcross hybrids using a common‐garden experiment with six replicated gardens that differed in soil moisture. Aboveground biomass, catkin production, seed production per catkin, and seed germination rate were significantly different among genetic classes. For aboveground biomass and catkin production, hybrids generally had intermediate or inferior performance compared to parent species. Salix eriocephala had the highest performance for all performance measures, but in two gardens F1 plants had superior or equal performance for aboveground biomass and female catkin production. Salix eriocephala and backcrosses to S. eriocephala had the highest numbers of filled seeds per catkin and the highest estimates of total fitness in all gardens. Measures of filled seeds per catkin and germination rate tend to support the model of endogenous hybrid unfitness, and these two measures had major effects on estimates of total seed production per catkin. We also estimated how the two willow species differ genetically in these fitness measures using line cross analysis. We found a complex genetic architecture underlying the fitness differences between species that involved additive, dominance, and epistatic genetic effects for all fitness measures. The environment was important in the expression of these genetic differences, because the type of epistasis differed among the gardens for aboveground biomass and for female catkin production. These findings suggest that fine‐scale environmental variation can have a significant impact on hybrid fitness in hybrid zones where parents and hybrids are widely interspersed.


Biocontrol | 2015

Nutritional niche overlap potentiates the use of endophytes in biocontrol of a tree disease

Kathrin Blumenstein; Benedicte R. Albrectsen; Juan A. Martín; Malin Hultberg; Thomas N. Sieber; Marjo Helander; Johanna Witzell

Asymptomatic endophytic fungi are often regarded as potent biocontrol agents in plants, but the competitive interactions between endophytes and other microbes within the same host plant are poorly understood. We tested a hypothesis that as compared to asymptomatic endophytes, an aggressive pathogen inhabiting the same host is able to utilize carbon substrates more efficiently. Using phenotype microarray, we determined the carbon utilization profiles of the highly virulent Dutch elm disease (DED) pathogen Ophiostoma novo-ulmi, and four asymptomatic elm (Ulmus spp.) endophyte isolates that were selected based on their differential association to the DED-susceptibility pattern of the host elms. The competitive interactions between isolates were evaluated using a niche overlap index. In contrast to our hypothesis, the studied endophytes exhibited extensive niche overlap with the pathogen, suggesting that some endophyte strains might protect elms against DED-pathogen through competition for substrates and provide new tools for biocontrol of DED.


Tree Genetics & Genomes | 2012

Global regulatory burden for field testing of genetically modified trees

Venkatesh Viswanath; Benedicte R. Albrectsen; Steven H. Strauss

Field trials are widely known to be essential for understanding the value and adaptability of trees produced via conventional and transgenic biotechnologies. However, obtaining permission for transgenic field trials is often considered to be very difficult in many countries. To understand the extent of regulatory requirements around the world and the burdens they impose, we surveyed 36 scientists and practitioners from 20 different countries who had experience or direct knowledge of regulatory compliance with field trials of transgenic trees. Results showed that permits and monitoring were universally required, and that public disclosure of field trial locations was required in three quarters of countries. Other major findings were that: separate approvals for different constructs, tree species, and trial locations were required in more than three quarters of the countries; characterization of each transgene insertion event was required as part of the application in four fifths of countries; and the application process itself was perceived as the largest single burden. Regulatory tiers that differentiate different kinds of transgenic trees based on perceived risk were present in only one fifth of countries. The data confirm the widespread perception among scientists that the costs and burdens of conducting field trials with transgenic trees are nearly universal substantial impediments to scientific and breeding progress.


PLOS ONE | 2014

No Evidence of Geographical Structure of Salicinoid Chemotypes within Populus Tremula

Ken Keefover-Ring; Maria Ahnlund; Ilka Nacif Abreu; Stefan Jansson; Thomas Moritz; Benedicte R. Albrectsen

Salicinoids are well-known defense compounds in salicaceous trees and careful screening at the population level is warranted to fully understand their diversity and function. European aspen, Populus tremula, is a foundation species in Eurasia and highly polymorphic in Sweden. We exhaustively surveyed 102 replicated genotypes from the Swedish Aspen collection (SwAsp) for foliar salicinoids using UHPLC-ESI-TOF/MS and identified nine novel compounds, bringing the total to 19 for this species. Salicinoid structure followed a modular architecture of a salicin skeleton with added side groups, alone or in combination. Two main moieties, 2′-cinnamoyl and 2′-acetyl, grouped the SwAsp population into four distinct chemotypes, and the relative allocation of salicinoids was remarkably constant between different environments, implying a highly channeled biosynthesis of these compounds. Slightly more than half of the SwAsp genotypes belonged to the cinnamoyl chemotype. A fraction synthesized the acetyl moiety alone (∼7%) or in combination with cinnamoyl (∼2%), and close to forty percent lacked either of the two characteristic moieties, and thus resemble P. tremuloides in their salicinoid profile. The two most abundant chemotypes were evenly distributed throughout Sweden, unlike geographical patterns reported for SwAsp phenology traits, plant defense genes, and herbivore community associations. Here we present the salicinoid characterization of the SwAsp collection as a resource for future studies of aspen chemical ecology, salicinoid biosynthesis, and genetics.


Frontiers in Plant Science | 2015

Comparative physiology of allopatric Populus species: geographic clines in photosynthesis, height growth, and carbon isotope discrimination in common gardens

Raju Y. Soolanayakanahally; Robert D. Guy; Nathaniel R. Street; Kathryn M. Robinson; Salim N. Silim; Benedicte R. Albrectsen; Stefan Jansson

Populus species with wide geographic ranges display strong adaptation to local environments. We studied the clinal patterns in phenology and ecophysiology in allopatric Populus species adapted to similar environments on different continents under common garden settings. As a result of climatic adaptation, both Populus tremula L. and Populus balsamifera L. display latitudinal clines in photosynthetic rates (A), whereby high-latitude trees of P. tremula had higher A compared to low-latitude trees and nearly so in P. balsamifera (p = 0.06). Stomatal conductance (gs) and chlorophyll content index (CCI) follow similar latitudinal trends. However, foliar nitrogen was positively correlated with latitude in P. balsamifera and negatively correlated in P. tremula. No significant trends in carbon isotope composition of the leaf tissue (δ13C) were observed for both species; but, intrinsic water-use efficiency (WUEi) was negatively correlated with the latitude of origin in P. balsamifera. In spite of intrinsically higher A, high-latitude trees in both common gardens accomplished less height gain as a result of early bud set. Thus, shoot biomass was determined by height elongation duration (HED), which was well approximated by the number of days available for free growth between bud flush and bud set. We highlight the shortcoming of unreplicated outdoor common gardens for tree improvement and the crucial role of photoperiod in limiting height growth, further complicating interpretation of other secondary effects.


Frontiers in Microbiology | 2015

Phenotype MicroArrays as a complementary tool to next generation sequencing for characterization of tree endophytes

Kathrin Blumenstein; David Macaya-Sanz; Juana A. Martin; Benedicte R. Albrectsen; Johanna Witzell

There is an increasing need to calibrate microbial community profiles obtained through next generation sequencing (NGS) with relevant taxonomic identities of the microbes, and to further associate these identities with phenotypic attributes. Phenotype MicroArray (PM) techniques provide a semi-high throughput assay for characterization and monitoring the microbial cellular phenotypes. Here, we present detailed descriptions of two different PM protocols used in our recent studies on fungal endophytes of forest trees, and highlight the benefits and limitations of this technique. We found that the PM approach enables effective screening of substrate utilization by endophytes. However, the technical limitations are multifaceted and the interpretation of the PM data challenging. For the best result, we recommend that the growth conditions for the fungi are carefully standardized. In addition, rigorous replication and control strategies should be employed whether using pre-configured, commercial microwell-plates or in-house designed PM plates for targeted substrate analyses. With these precautions, the PM technique is a valuable tool to characterize the metabolic capabilities of individual endophyte isolates, or successional endophyte communities identified by NGS, allowing a functional interpretation of the taxonomic data. Thus, PM approaches can provide valuable complementary information for NGS studies of fungal endophytes in forest trees.


Plant Ecology | 2010

Variation in protein complexation capacity among and within six plant species across a boreal forest chronosequence

Michael J. Gundale; Jennie Sverker; Benedicte R. Albrectsen; Marie-Charlotte Nilsson; David A. Wardle

We investigated among and within species variation in several litter chemical properties, including protein complexation capacity (PCC), for six plant species across a boreal forest chronosequence in northern Sweden across which stand fertility declines sharply with stand age. We hypothesized (1) that evergreen species which dominate in late-successional stands would exhibit higher PCCs than deciduous species that dominate in young stands, (2) that individual species would increase their PCCs in response to nutrient limitation as succession proceeds, and (3) that differences in PCC among litter types would determine their interactive effects with proteins on soil N and C mineralization. The data demonstrated a high PCC, but a low PCC per unit of soluble phenol, for two deciduous species that dominate in early-successional high fertility stands, providing mixed support for our first hypothesis. No species demonstrated a significant correlation between their PCC and stand age, which did not support our second hypothesis. Finally, a soil incubation assay revealed that litter extracts for three of the six species had negative interactive effects with added proteins on N mineralization rates, and that all six species demonstrated positive interactive effects with protein on C mineralization. This pattern did not provide strong support for our third hypothesis, and suggests that N immobilization was likely a more important factor regulating N mineralization than stabilization of proteins into tannin complexes. These data suggest that multiple interactive mechanisms between litter extracts and proteins likely occur simultaneously to influence the availability of N in soils.

Collaboration


Dive into the Benedicte R. Albrectsen's collaboration.

Top Co-Authors

Avatar

Michael J. Gundale

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Johanna Witzell

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge