Bénédicte Schepens
Université catholique de Louvain
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bénédicte Schepens.
Progress in Brain Research | 2004
Trevor Drew; Stephen D. Prentice; Bénédicte Schepens
While a basic locomotor rhythm is centrally generated by spinal circuits, descending pathways are critical for ensuring appropriate anticipatory modifications of gait to accommodate uneven terrain. Neurons in the motor cortex command the changes in muscle activity required to modify limb trajectory when stepping over obstacles. Simultaneously, neurons in the brainstem reticular formation ensure that these modifications are superimposed on an appropriate base of postural support. Recent experiments suggest that the same neurons in the same structures also provide similar information during reaching movements. It is suggested that, during both locomotion and reaching movements, the final expression of descending signals is influenced by the state and excitability of the spinal circuits upon which they impinge.
Journal of Neurophysiology | 2008
Bénédicte Schepens; Paul J. Stapley; Trevor Drew
We have previously suggested that the discharge characteristics of some neurons in the pontomedullary reticular formation (PMRF) are contingent on the simultaneous requirement for activity in both ipsilateral flexor muscles and contralateral extensors. To test this hypothesis we trained cats to stand on four force platforms and to perform a task in which they were required to reach forward with one forelimb or the other and depress a lever. As such the task required the cat to make a flexion movement followed by an extension in the reaching limb while maintaining postural support by increasing extensor muscle tonus in the supporting limbs. We recorded the activity of 131 neurons from the PMRF of three cats during left, ipsilateral reach. Of these, 86/131 (66%) showed a change in discharge frequency prior to the onset of activity in one of the prime flexor muscles and 43/86 (50%) showed a bimodal pattern of discharge in which activity decreased during the lever press. Among the remaining cells, 28/86 (33%) showed maintained activity throughout the reach and the lever press. Most cells showed a broadly similar pattern of discharge during reaches with the right, contralateral limb. We suggest these results support the view that a population of neurons within the PMRF contributes to the control of movement in one forelimb and the control of posture in the other forelimb as a coordinated unit. Another population of neurons contributes to the control of postural support independently of the nature of the activity in the reaching limb.
The Journal of Experimental Biology | 2004
Bénédicte Schepens; Guillaume Bastien; Norman Heglund; Patrick Willems
SUMMARY The effect of age and body size on the total mechanical work done during walking is studied in children of 3–12 years of age and in adults. The total mechanical work per stride (Wtot) is measured as the sum of the external work, Wext (i.e. the work required to move the centre of mass of the body relative to the surroundings), and the internal work, Wint (i.e. the work required to move the limbs relative to the centre of mass of the body, Wint,k, and the work done by one leg against the other during the double contact period, Wint,dc). Above 0.5 m s–1, both Wext and Wint,k, normalised to body mass and per unit distance (J kg–1 m–1), are greater in children than in adults; these differences are greater the higher the speed and the younger the subject. Both in children and in adults, the normalised Wint,dc shows an inverted U-shape curve as a function of speed, attaining a maximum value independent of age but occurring at higher speeds in older subjects. A higher metabolic energy input (J kg–1 m–1) is also observed in children, although in children younger than 6 years of age, the normalised mechanical work increases relatively less than the normalised energy cost of locomotion. This suggests that young children have a lower efficiency of positive muscular work production than adults during walking. Differences in normalised mechanical work, energy cost and efficiency between children and adults disappear after the age of 10.
The Journal of Physiology | 1998
Bénédicte Schepens; Patrick Willems; G. A. Cavagna
1 The effect of age and body size on the bouncing mechanism of running was studied in children aged 2‐16 years. 2 The natural frequency of the bouncing system (fs) and the external work required to move the centre of mass of the body were measured using a force platform. 3 At all ages, during running below ≈11 km h−1, the freely chosen step frequency (f) is about equal to fs (symmetric rebound), independent of speed, although it decreases with age from 4 Hz at 2 years to 2.5 Hz above 12 years. 4 The decrease of step frequency with age is associated with a decrease in the mass‐specific vertical stiffness of the bouncing system (k/m) due to an increase of the body mass (m) with a constant stiffness (k).Above 12 years, k/mand fremain approximately constant due to a parallel increase in both kand mwith age. 5 Above the critical speed of ≈11 km h−1, independent of age, the rebound becomes asymmetric, i.e. f< fs. 6 The maximum running speed (Vf,max) increases with age while the step frequency at remains constant (≈4 Hz), independent of age. 7 At a given speed, the higher step frequency in preteens results in a mass‐specific power against gravity less than that in adults. The external power required to move the centre of mass of the body is correspondingly reduced.
Electroencephalography and Clinical Neurophysiology | 1995
P. J. Delwaide; Bénédicte Schepens
The audiospinal reaction (ASR) to a 30 msec tone of 90 dB has been studied in 66 seated healthy volunteers. Electromyographic bursts induced in trapezius (Tra), soleus (Sol) and tibialis anterior (TA) have been looked for. Facilitation of Sol H reflex has been measured in 21 subjects in terms of delays from delivery of the sound. Among the subjects, 11 had a stable TA H reflex whose facilitation was compared to that of Sol H. Effects of selective isometric voluntary contraction of either Sol or TA were assessed both on EMG responses and H reflex facilitation. At rest, only 36% of subjects exhibited a response in Sol at a mean latency of 123 msec and 39% in TA at a latency of 119 msec. Responses were seen in antagonist muscles in 74% of subjects. Incidence in Tra was 96%. During voluntary contraction, the results were not significantly changed either in the contracted muscle or its antagonist. H reflex facilitation of both TA and Sol started 50 msec after the sound to peak after 75-125 msec and returned to baseline values after 250 msec. Extent of Sol H reflex facilitation remained similar during voluntary contraction of Sol and TA. It was observed that EMG responses were more frequent in subjects with brisk reflexes but not necessarily in those who exhibited the largest H reflex facilitation. The results are in agreement with assumptions that ASR is mediated through reticulo-spinal pathways but do not support the view that it corresponds to a flexor reaction. In addition to providing quantitative data for comparisons in pathological cases, they suggest differences in the mode of activation of motoneurones by the motor cortex and subcortical nuclei.
The Journal of Experimental Biology | 2003
Guillaume Bastien; Norman Heglund; Bénédicte Schepens
SUMMARY During walking, when both feet are on the ground (the double contact phase), the legs push against each other, and both positive and negative work are done simultaneously. The work done by one leg on the other (Wint,dc) is not counted in the classic measurements of the positive muscular work done during walking. Using force platforms, we studied the effect of speed and age (size) on Wint,dc. In adults and in 3-12-year-old children, Wint,dc (J kg-1 m-1) as a function of speed shows an inverted U-shaped curve, attaining a maximum value that is independent of size but that occurs at higher speeds in larger subjects. Normalising the speed with the Froude number shows that Wint,dc is maximal at about 0.3 in both children and adults. Differences due to size disappear for the most part when normalised with the Froude number, indicating that these speed-dependent changes are primarily a result of body size changes. At its maximum, Wint,dc represents more than 40% of Wext (the positive work done to move the centre of mass of the body relative to the surroundings) in both children and adults.
Electroencephalography and Clinical Neurophysiology\/electromyography and Motor Control | 1995
Bénédicte Schepens; P. J. Delwaide
An unexpected loud sound--sufficient to elicit an audio-spinal response in lower limb muscles during standing--has been delivered during the gait cycle in 40 healthy volunteers. Raw EMG bursts were recorded in the right trapezius (Tra), and in soleus (Sol) and tibialis anterior (TA) muscles bilaterally before being converted into envelope curves which were measured. The results indicated that the step cycle was not modified. On the other hand, EMG bursts time-locked to the sound appeared in Tra during gait. Audio-spinal responses similar to those seen during standing were present during gait only in the flexor TA provided it was silent. In Sol, responses were absent regardless of whether it was active or not. Some later and not time-locked EMG reinforcements were however seen, provided Sol was active. The audio-spinal responses during gait differed thus markedly from those seen at rest in the standing position. It is suggested to consider intervention of the central pattern generator which is already known to alter dramatically the responses to peripheral stimuli during gait. Another possibility might be that the descending influences are modified in supraspinal structures but this interpretation is less likely as responses are not cyclically modified in Tra.
Scientific Reports | 2013
M. A. Legramandi; Bénédicte Schepens; G. A. Cavagna
In an ideal elastic bounce of the body, the time during which mechanical energy is released during the push equals the time during which mechanical energy is absorbed during the brake, and the maximal upward velocity attained by the center of mass equals the maximal downward velocity. Deviations from this ideal model, prolonged push duration and lower upward velocity, have found to be greater in older than in younger adult humans. However it is not known how similarity to the elastic bounce changes during growth and whether an optimal elastic bounce is attained at some age. Here we show that similarity with the elastic bounce is minimal at 2 years and increases with age attaining a maximum at 13-16 years, concomitant with a mirror sixfold decrease of the impact deceleration peak following collision of the foot with the ground. These trends slowly reverse during the course of the lifespan.
PLOS ONE | 2015
Clément N. Gambelli; Daniel Theisen; Patrick Willems; Bénédicte Schepens
On Earth, when landing from a counter-movement jump, muscles contract before touchdown to anticipate imminent collision with the ground and place the limbs in a proper position. This study assesses how the control of landing is modified when gravity is increased above 1 g. Hypergravity was simulated in two different ways: (1) by generating centrifugal forces during turns of an aircraft (A300) and (2) by pulling the subject downwards in the laboratory with a Subject Loading System (SLS). Eight subjects were asked to perform counter-movement jumps at 1 g on Earth and at 3 hypergravity levels (1.2, 1.4 and 1.6 g) both in A300 and with SLS. External forces applied to the body, movements of the lower limb segments and muscular activity of 6 lower limb muscles were recorded. Our results show that both in A300 and with SLS, as in 1 g: (1) the anticipation phase is present; (2) during the loading phase (from touchdown until the peak of vertical ground reaction force), lower limb muscles act like a stiff spring, whereas during the second part (from the peak of vertical ground reaction force until the return to the standing position), they act like a compliant spring associated with a damper. (3) With increasing gravity, the preparatory adjustments and the loading phase are modified whereas the second part does not change drastically. (4) The modifications are similar in A300 and with SLS, however the effect of hypergravity is accentuated in A300, probably due to altered sensory inputs. This observation suggests that otolithic information plays an important role in the control of the landing from a jump.
Gait & Posture | 2016
Guillaume Meurisse; Frédéric Dierick; Bénédicte Schepens; Guillaume Bastien
In gait lab, the quantification of the ground reaction forces (GRFs) acting upon individual limbs is required for dynamic analysis. However, using a single force plate, only the resultant GRF acting on both limbs is available. The aims of this study are (a) to develop an algorithm allowing a reliable detection of the front foot contact (FC) and the back foot off (FO) time events when walking on a single plate, (b) to reconstruct the vertical GRFs acting upon each limb during the double contact phase (DC) and (c) to evaluate this reconstruction on healthy and clinical gait trials. For the purpose of the study, 811 force measurements during DC were analyzed based on walking trials from 27 healthy subjects and 88 patients. FC and FO are reliably detected using a novel method based on the distance covered by the centre of pressure. The algorithm for the force reconstruction is a revised version of the approach of Davis and Cavanagh [24]. In order to assess the robustness of the algorithm, we compare the resulting GRFs with the real forces measured with individual force plates. The median of the relative error on force reconstruction is 1.8% for the healthy gait and 2.5% for the clinical gait. The reconstructed and the real GRFs during DC are strongly correlated for both healthy and clinical gait data (R(2)=0.998 and 0.991, respectively).