Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benedikt Asbach is active.

Publication


Featured researches published by Benedikt Asbach.


Journal of Virology | 2015

Head-to-Head Comparison of Poxvirus NYVAC and ALVAC Vectors Expressing Identical HIV-1 Clade C Immunogens in Prime-Boost Combination with Env Protein in Nonhuman Primates

Juan García-Arriaza; Beatriz Perdiguero; Jonathan L. Heeney; Michael S. Seaman; David C. Montefiori; Celia C. LaBranche; Nicole L. Yates; Xiaoying Shen; Georgia D. Tomaras; Guido Ferrari; Kathryn E. Foulds; Adrian B. McDermott; Shing-Fen Kao; Mario Roederer; Natalie Hawkins; Steve Self; Jiansheng Yao; Patrick Farrell; Sanjay Phogat; Jim Tartaglia; Susan W. Barnett; Brian J. Burke; Anthony D. Cristillo; Deborah Weiss; Carter Lee; Karen V. Kibler; Bert Jacobs; Benedikt Asbach; Ralf Wagner; Song Ding

ABSTRACT We compared the HIV-1-specific cellular and humoral immune responses elicited in rhesus macaques immunized with two poxvirus vectors (NYVAC and ALVAC) expressing the same HIV-1 antigens from clade C, Env gp140 as a trimeric cell-released protein and a Gag-Pol-Nef polyprotein as Gag-induced virus-like particles (VLPs) (referred to as NYVAC-C and ALVAC-C). The immunization protocol consisted of two doses of the corresponding poxvirus vector plus two doses of a combination of the poxvirus vector and a purified HIV-1 gp120 protein from clade C. This immunogenicity profile was also compared to that elicited by vaccine regimens consisting of two doses of the ALVAC vector expressing HIV-1 antigens from clades B/E (ALVAC-vCP1521) plus two doses of a combination of ALVAC-vCP1521 and HIV-1 gp120 protein from clades B/E (similar to the RV144 trial regimen) or clade C. The results showed that immunization of macaques with NYVAC-C stimulated at different times more potent HIV-1-specific CD4+ T-cell responses and induced a trend toward higher-magnitude HIV-1-specific CD8+ T-cell immune responses than did ALVAC-C. Furthermore, NYVAC-C induced a trend toward higher levels of binding IgG antibodies against clade C HIV-1 gp140, gp120, or murine leukemia virus (MuLV) gp70-scaffolded V1/V2 and toward best cross-clade-binding IgG responses against HIV-1 gp140 from clades A, B, and group M consensus, than did ALVAC-C. Of the linear binding IgG responses, most were directed against the V3 loop in all immunization groups. Additionally, NYVAC-C and ALVAC-C also induced similar levels of HIV-1-neutralizing antibodies and antibody-dependent cellular cytotoxicity (ADCC) responses. Interestingly, binding IgA antibody levels against HIV-1 gp120 or MuLV gp70-scaffolded V1/V2 were absent or very low in all immunization groups. Overall, these results provide a comprehensive survey of the immunogenicity of NYVAC versus ALVAC expressing HIV-1 antigens in nonhuman primates and indicate that NYVAC may represent an alternative candidate to ALVAC in the development of a future HIV-1 vaccine. IMPORTANCE The finding of a safe and effective HIV/AIDS vaccine immunogen is one of the main research priorities. Here, we generated two poxvirus-based HIV vaccine candidates (NYVAC and ALVAC vectors) expressing the same clade C HIV-1 antigens in separate vectors, and we analyzed in nonhuman primates their immunogenicity profiles. The results showed that immunization with NYVAC-C induced a trend toward higher HIV-1-specific cellular and humoral immune responses than did ALVAC-C, indicating that this new NYVAC vector could be a novel optimized HIV/AIDS vaccine candidate for human clinical trials.


Journal of Virology | 2015

Virological and Immunological Characterization of Novel NYVAC-Based HIV/AIDS Vaccine Candidates Expressing Clade C Trimeric Soluble gp140(ZM96) and Gag(ZM96)-Pol-Nef(CN54) as Virus-Like Particles

Beatriz Perdiguero; Carmen Elena Gómez; Victoria Cepeda; Lucas Sánchez-Sampedro; Juan García-Arriaza; Ernesto Mejías-Pérez; Victoria Jiménez; Cristina Sánchez; Carlos Oscar S. Sorzano; Juan Carlos Oliveros; Julie Delaloye; Thierry Roger; Thierry Calandra; Benedikt Asbach; Ralf Wagner; Karen V. Kibler; Bertram L. Jacobs; Giuseppe Pantaleo; Mariano Esteban

ABSTRACT The generation of vaccines against HIV/AIDS able to induce long-lasting protective immunity remains a major goal in the HIV field. The modest efficacy (31.2%) against HIV infection observed in the RV144 phase III clinical trial highlighted the need for further improvement of HIV vaccine candidates, formulation, and vaccine regimen. In this study, we have generated two novel NYVAC vectors, expressing HIV-1 clade C gp140(ZM96) (NYVAC-gp140) or Gag(ZM96)-Pol-Nef(CN54) (NYVAC-Gag-Pol-Nef), and defined their virological and immunological characteristics in cultured cells and in mice. The insertion of HIV genes does not affect the replication capacity of NYVAC recombinants in primary chicken embryo fibroblast cells, HIV sequences remain stable after multiple passages, and HIV antigens are correctly expressed and released from cells, with Env as a trimer (NYVAC-gp140), while in NYVAC-Gag-Pol-Nef-infected cells Gag-induced virus-like particles (VLPs) are abundant. Electron microscopy revealed that VLPs accumulated with time at the cell surface, with no interference with NYVAC morphogenesis. Both vectors trigger specific innate responses in human cells and show an attenuation profile in immunocompromised adult BALB/c and newborn CD1 mice after intracranial inoculation. Analysis of the immune responses elicited in mice after homologous NYVAC prime/NYVAC boost immunization shows that recombinant viruses induced polyfunctional Env-specific CD4 or Gag-specific CD8 T cell responses. Antibody responses against gp140 and p17/p24 were elicited. Our findings showed important insights into virus-host cell interactions of NYVAC vectors expressing HIV antigens, with the activation of specific immune parameters which will help to unravel potential correlates of protection against HIV in human clinical trials with these vectors. IMPORTANCE We have generated two novel NYVAC-based HIV vaccine candidates expressing HIV-1 clade C trimeric soluble gp140 (ZM96) and Gag(ZM96)-Pol-Nef(CN54) as VLPs. These vectors are stable and express high levels of both HIV-1 antigens. Gag-induced VLPs do not interfere with NYVAC morphogenesis, are highly attenuated in immunocompromised and newborn mice after intracranial inoculation, trigger specific innate immune responses in human cells, and activate T (Env-specific CD4 and Gag-specific CD8) and B cell immune responses to the HIV antigens, leading to high antibody titers against gp140. For these reasons, these vectors can be considered vaccine candidates against HIV/AIDS and currently are being tested in macaques and humans.


PLOS ONE | 2012

Comprehensive Analysis of Interactions between the Src-Associated Protein in Mitosis of 68 kDa and the Human Src-Homology 3 Proteome

Benedikt Asbach; Christine Ludwig; Kalle Saksela; Ralf Wagner

The protein Sam68 is involved in many cellular processes such as cell-cycle regulation, RNA metabolism, or signal transduction. Sam68 comprises a central RNA-binding domain flanked by unstructured tails containing docking sites for signalling proteins including seven proline-rich sequences (denoted P0 to P6) as potential SH3-domain binding motifs. To comprehensively assess Sam68-SH3-interactions, we applied a phage-display screening of a library containing all approx. 300 human SH3 domains. Thereby we identified five new (from intersectin 2, the osteoclast stimulating factor OSF, nephrocystin, sorting nexin 9, and CIN85) and seven already known high-confidence Sam68-ligands (mainly from the Src-kinase family), as well as several lower-affinity binders. Interaction of the high-affinity Sam68-binders was confirmed in independent assays in vitro (phage-ELISA, GST-pull-down) and in vivo (FACS-based FRET-analysis with CFP- and YFP-tagged proteins). Fine-mapping analyses with peptides established P0, P3, P4, and P5 as exclusive docking-sites for SH3 domains, which showed varying preferences for these motifs. Mutational analyses identified individual residues within the proline-rich motifs being crucial for the interactions. Based on these data, we generated a Sam68-mutant incapable of interacting with SH3 domains any more, as subsequently demonstrated by FRET-analyses. In conclusion, we present a thorough characterization of Sam68’s interplay with the SH3 proteome. The observed interaction between Sam68 and OSF complements the known Sam68-Src and OSF-Src interactions. Thus, we propose, that Sam68 functions as a classical scaffold protein in this context, assembling components of an osteoclast-specific signalling pathway.


Journal of Virology | 2016

Potential To Streamline Heterologous DNA Prime and NYVAC/Protein Boost HIV Vaccine Regimens in Rhesus Macaques by Employing Improved Antigens

Benedikt Asbach; Alexander Kliche; Josef Köstler; Beatriz Perdiguero; Mariano Esteban; Bertram L. Jacobs; David C. Montefiori; Celia C. LaBranche; Nicole L. Yates; Georgia D. Tomaras; Guido Ferrari; Kathryn E. Foulds; Mario Roederer; Gary Landucci; Donald N. Forthal; Michael S. Seaman; Natalie Hawkins; Steven G. Self; Alicia Sato; Raphael Gottardo; Sanjay Phogat; James Tartaglia; Susan W. Barnett; Brian J. Burke; Anthony D. Cristillo; Deborah Weiss; Jesse Francis; Lindsey Galmin; Song Ding; Jonathan L. Heeney

ABSTRACT In a follow-up to the modest efficacy observed in the RV144 trial, researchers in the HIV vaccine field seek to substantiate and extend the results by evaluating other poxvirus vectors and combinations with DNA and protein vaccines. Earlier clinical trials (EuroVacc trials 01 to 03) evaluated the immunogenicity of HIV-1 clade C GagPolNef and gp120 antigens delivered via the poxviral vector NYVAC. These showed that a vaccination regimen including DNA-C priming prior to a NYVAC-C boost considerably enhanced vaccine-elicited immune responses compared to those with NYVAC-C alone. Moreover, responses were improved by using three as opposed to two DNA-C primes. In the present study, we assessed in nonhuman primates whether such vaccination regimens can be streamlined further by using fewer and accelerated immunizations and employing a novel generation of improved DNA-C and NYVAC-C vaccine candidates designed for higher expression levels and more balanced immune responses. Three different DNA-C prime/NYVAC-C+ protein boost vaccination regimens were tested in rhesus macaques. All regimens elicited vigorous and well-balanced CD8+ and CD4+ T cell responses that were broad and polyfunctional. Very high IgG binding titers, substantial antibody-dependent cellular cytotoxicity (ADCC), and modest antibody-dependent cell-mediated virus inhibition (ADCVI), but very low neutralization activity, were measured after the final immunizations. Overall, immune responses elicited in all three groups were very similar and of greater magnitude, breadth, and quality than those of earlier EuroVacc vaccines. In conclusion, these findings indicate that vaccination schemes can be simplified by using improved antigens and regimens. This may offer a more practical and affordable means to elicit potentially protective immune responses upon vaccination, especially in resource-constrained settings. IMPORTANCE Within the EuroVacc clinical trials, we previously assessed the immunogenicity of HIV clade C antigens delivered in a DNA prime/NYVAC boost regimen. The trials showed that the DNA prime crucially improved the responses, and three DNA primes with a NYVAC boost appeared to be optimal. Nevertheless, T cell responses were primarily directed toward Env, and humoral responses were modest. The aim of this study was to assess improved antigens for the capacity to elicit more potent and balanced responses in rhesus macaques, even with various simpler immunization regimens. Our results showed that the novel antigens in fact elicited larger numbers of T cells with a polyfunctional profile and a good Env-GagPolNef balance, as well as high-titer and Fc-functional antibody responses. Finally, comparison of the different schedules indicates that a simpler regimen of only two DNA primes and one NYVAC boost in combination with protein may be very efficient, thus showing that the novel antigens allow for easier immunization protocols.


BMC Immunology | 2017

An optimized IFN-γ ELISpot assay for the sensitive and standardized monitoring of CMV protein-reactive effector cells of cell-mediated immunity

Sascha Barabas; Theresa Spindler; Richard Kiener; Charlotte Tonar; Tamara Lugner; Julia Batzilla; Hanna Bendfeldt; Anne Rascle; Benedikt Asbach; Ralf Wagner; Ludwig Deml

BackgroundIn healthy individuals, Cytomegalovirus (CMV) infection is efficiently controlled by CMV-specific cell-mediated immunity (CMI). Functional impairment of CMI in immunocompromized individuals however can lead to uncontrolled CMV replication and severe clinical complications. Close monitoring of CMV-specific CMI is therefore clinically relevant and might allow a reliable prognosis of CMV disease as well as assist personalized therapeutic decisions.MethodsObjective of this work was the optimization and technical validation of an IFN-γ ELISpot assay for a standardized, sensitive and reliable quantification of CMV-reactive effector cells. T-activated® immunodominant CMV IE-1 and pp65 proteins were used as stimulants. All basic assay parameters and reagents were tested and optimized to establish a user-friendly protocol and maximize the signal-to-noise ratio of the ELISpot assay.ResultsOptimized and standardized ELISpot revealed low intra-assay, inter-assay and inter-operator variability (coefficient of variation CV below 22%) and CV inter-site was lower than 40%. Good assay linearity was obtained between 6 × 104 and 2 × 105 PBMC per well upon stimulation with T-activated® IE-1 (R2 = 0.97) and pp65 (R2 = 0.99) antigens. Remarkably, stimulation of peripheral blood mononuclear cells (PBMC) with T-activated® IE-1 and pp65 proteins resulted in the activation of a broad range of CMV-reactive effector cells, including CD3+CD4+ (Th), CD3+CD8+ (CTL), CD3−CD56+ (NK) and CD3+CD56+ (NKT-like) cells. Accordingly, the optimized IFN-γ ELISpot assay revealed very high sensitivity (97%) in a cohort of 45 healthy donors, of which 32 were CMV IgG-seropositive.ConclusionThe combined use of T-activated® IE-1 and pp65 proteins for the stimulation of PBMC with the optimized IFN-γ ELISpot assay represents a highly standardized, valuable tool to monitor the functionality of CMV-specific CMI with great sensitivity and reliability.


PLOS ONE | 2016

Targeting HIV-1 Env gp140 to LOX-1 Elicits Immune Responses in Rhesus Macaques

Gerard Zurawski; Sandra Zurawski; Anne Laure Flamar; Laura Richert; Ralf Wagner; Georgia D. Tomaras; David C. Montefiori; Mario Roederer; Guido Ferrari; Christine Lacabaratz; Henri Bonnabau; Peter Klucar; Zhiqing Wang; Kathryn E. Foulds; Shing Fen Kao; Nicole L. Yates; Celia C. LaBranche; Bertram L. Jacobs; Karen V. Kibler; Benedikt Asbach; Alexander Kliche; Andres M. Salazar; Steve Reed; Steve Self; Raphael Gottardo; Lindsey Galmin; Deborah Weiss; Anthony D. Cristillo; Rodolphe Thiébaut; Giuseppe Pantaleo

Improved antigenicity against HIV-1 envelope (Env) protein is needed to elicit vaccine-induced protective immunity in humans. Here we describe the first tests in non-human primates (NHPs) of Env gp140 protein fused to a humanized anti-LOX-1 recombinant antibody for delivering Env directly to LOX-1-bearing antigen presenting cells, especially dendritic cells (DC). LOX-1, or 1ectin-like oxidized low-density lipoprotein (LDL) receptor-1, is expressed on various antigen presenting cells and endothelial cells, and is involved in promoting humoral immune responses. The anti-LOX-1 Env gp140 fusion protein was tested for priming immune responses and boosting responses in animals primed with replication competent NYVAC-KC Env gp140 vaccinia virus. Anti-LOX-1 Env gp140 vaccination elicited robust cellular and humoral responses when used for either priming or boosting immunity. Co-administration with Poly ICLC, a TLR3 agonist, was superior to GLA, a TLR4 agonist. Both CD4+ and CD8+ Env-specific T cell responses were elicited by anti-LOX-1 Env gp140, but in particular the CD4+ T cells were multifunctional and directed to multiple epitopes. Serum IgG and IgA antibody responses induced by anti-LOX-1 Env gp140 against various gp140 domains were cross-reactive across HIV-1 clades; however, the sera neutralized only HIV-1 bearing sequences most similar to the clade C 96ZM651 Env gp140 carried by the anti-LOX-1 vehicle. These data, as well as the safety of this protein vaccine, justify further exploration of this DC-targeting vaccine approach for protective immunity against HIV-1.


Molecular and Cellular Biology | 2015

Brk/Protein Tyrosine Kinase 6 Phosphorylates p27KIP1, Regulating the Activity of Cyclin D–Cyclin-Dependent Kinase 4

Priyank Patel; Benedikt Asbach; Elina Shteyn; Cindy Gomez; Alexander Coltoff; Sadia Bhuyan; Angela L. Tyner; Ralf Wagner; Stacy W. Blain

ABSTRACT Cyclin D and cyclin-dependent kinase 4 (cdk4) are overexpressed in a variety of tumors, but their levels are not accurate indicators of oncogenic activity because an accessory factor such as p27Kip1 is required to assemble this unstable dimer. Additionally, tyrosine (Y) phosphorylation of p27 (pY88) is required to activate cdk4, acting as an “on/off switch.” We identified two SH3 recruitment domains within p27 that modulate pY88, thereby modulating cdk4 activity. Via an SH3-PXXP interaction screen, we identified Brk (breast tumor-related kinase) as a high-affinity p27 kinase. Modulation of Brk in breast cancer cells modulates pY88 and increases resistance to the cdk4 inhibitor PD 0332991. An alternatively spliced form of Brk (Alt Brk) which contains its SH3 domain blocks pY88 and acts as an endogenous cdk4 inhibitor, identifying a potentially targetable regulatory region within p27. Brk is overexpressed in 60% of breast carcinomas, suggesting that this facilitates cell cycle progression by modulating cdk4 through p27 Y phosphorylation. p27 has been considered a tumor suppressor, but our data strengthen the idea that it should also be considered an oncoprotein, responsible for cyclin D-cdk4 activity.


Analytical and Bioanalytical Chemistry | 2010

Protein microarray assay for the screening of SH3 domain interactions

Benedikt Asbach; Michaela Kolb; Michael Liss; Ralf Wagner; Michael Schäferling

Analysis of cellular signal transduction processes increasingly focuses on the systematic characterization of complete protein interaction networks. Understanding the interplay of signaling components enables insight into the molecular basis of diverse diseases such as cancer. This paves the way for the rational design of specific therapeutics. Protein interactions are often mediated by conserved modular domains, e.g., SH3-domains, which recognize proline-rich sequences in their cognate ligands. In the course of this study, different microarray formats (reactive silane monolayers and nitrocellulose on glass slides) and assay work flows were evaluated to develop a microarray based screening assay that permits the reliable identification of interactions between certain target proteins with a set of SH3 domains. Nine representative SH3 domains which were produced and purified as GST-fusion proteins were spotted on the microarray substrates and probed with two well-characterized ligands, the Nef protein from HIV-1 and the human protein Sam68. The best results from these low-density model arrays were obtained with nitrocellulose slides. We show that a straightforward and highly robust detection of ligand binding is achieved by staining with a fluorescently labeled antibody directed against the N-terminal His-tag attached to these proteins. The optimized assay protocol reported here allows for the identification of SH3-interactions with high reproducibility and adequate signal-to-background and signal-to-noise ratios, as well as the quantitative determination of relative binding affinities.


Human Gene Therapy | 2008

Fusion of Epstein-Barr Virus Nuclear Antigen-1-Derived Glycine–Alanine Repeat to Trans-Dominant HIV-1 Gag Increases Inhibitory Activities and Survival of Transduced Cells In Vivo

Diana Hammer; Jens Wild; Christine Ludwig; Benedikt Asbach; Frank Notka; Ralf Wagner

Trans-dominant human immunodeficiency virus type 1 (HIV-1) Gag derivatives have been shown to efficiently inhibit late steps of HIV-1 replication in vitro by interfering with Gag precursor assembly, thus ranking among the interesting candidates for gene therapy approaches. However, efficient antiviral activities of corresponding transgenes are likely to be counteracted in particular by cell-mediated host immune responses toward the transgene-expressing cells. To decrease this potential immunogenicity, a 24-amino acid Gly-Ala (GA) stretch derived from Epstein-Barr virus nuclear antigen-1 (EBNA1) and known to overcome proteasomal degradation was fused to a trans-dominant Gag variant (sgD1). To determine the capacity of this fusion polypeptide to repress viral replication, PM-1 cells were transduced with sgD1 and GAsgD1 transgenes, using retroviral gene transfer. Challenge of stably transfected permissive cell lines with various viral strains indicated that N-terminal GA fusion even enhanced the inhibitory properties of sgD1. Further studies revealed that the GA stretch increased protein stability by blocking proteasomal degradation of Gag proteins. Immunization of BALB/c mice with a DNA vaccine vector expressing sgD1 induced substantial Gag-specific immune responses that were, however, clearly diminished in the presence of GA. Furthermore, recognition of cells expressing the GA-fused transgene by CD8(+) T cells was drastically reduced, both in vitro and in vivo, resulting in prolonged survival of the transduced cells in recipient mice.


Scientific Reports | 2018

Vaccine vectors based on Adenovirus 19a/64 exhibit broad cellular tropism and potently restimulate HCMV-specific T cell responses ex vivo

Richard Kiener; Markus Fleischmann; Christiane Schwegler; Zsolt Ruzsics; Christian Thirion; Silke Schrödel; Benedikt Asbach; Ralf Wagner

Human Cytomegalovirus (HCMV) remains a major health burden and the development of a vaccine is a global priority. We developed new viral vectors delivering the T cell immunogens IE-1 and pp65 based on Adenovirus 19a/64 (Ad19a/64), a member of subgroup D. In this ex vivo study, the novel vectors were compared side by side to Ad5 or modified Vaccinia Ankara (MVA) strains expressing the same transgenes. We found that unlike Ad5, Ad19a/64 vectors readily transduce a broad panel of immune cells, including monocytes, T cells, NK cells and monocyte-derived dendritic cells (moDCs). Both Ad19a/64- and MVA-transduced moDCs efficiently restimulated IE-1 or pp65-specific T cells but MVA induced a higher amount of cytotoxicity in this cell type. Ad5 and Ad19 induced upregulation of CD86 and HLA-DR in moDCs whereas expression of CD80 and CD83 was largely unaltered. By contrast, MVA transduction led to downregulation of all markers. Taken together, our data demonstrate that Ad19a/64 is a promising vector for the delivery of HCMV immunogens since it transduces dendritic cells with an efficiency that is comparable to MVA, but cytotoxicity and interference with dendritic cell maturation are less pronounced.

Collaboration


Dive into the Benedikt Asbach's collaboration.

Top Co-Authors

Avatar

Ralf Wagner

University of Regensburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beatriz Perdiguero

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Georgia D. Tomaras

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

Guido Ferrari

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

Kathryn E. Foulds

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge