Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benedikt Hallgrímsson is active.

Publication


Featured researches published by Benedikt Hallgrímsson.


Evolutionary Biology-new York | 2009

Deciphering the Palimpsest: Studying the Relationship Between Morphological Integration and Phenotypic Covariation

Benedikt Hallgrímsson; Heather A. Jamniczky; Nathan M. Young; Campbell Rolian; Trish E. Parsons; Julia C. Boughner; Ralph S. Marcucio

Organisms represent a complex arrangement of anatomical structures and individuated parts that must maintain functional associations through development. This integration of variation between functionally related body parts and the modular organization of development are fundamental determinants of their evolvability. This is because integration results in the expression of coordinated variation that can create preferred directions for evolutionary change, while modularity enables variation in a group of traits or regions to accumulate without deleterious effects on other aspects of the organism. Using our own work on both model systems (e.g., lab mice, avians) and natural populations of rodents and primates, we explore in this paper the relationship between patterns of phenotypic covariation and the developmental determinants of integration that those patterns are assumed to reflect. We show that integration cannot be reliably studied through phenotypic covariance patterns alone and argue that the relationship between phenotypic covariation and integration is obscured in two ways. One is the superimposition of multiple determinants of covariance in complex systems and the other is the dependence of covariation structure on variances in covariance-generating processes. As a consequence, we argue that the direct study of the developmental determinants of integration in model systems is necessary to fully interpret patterns of covariation in natural populations, to link covariation patterns to the processes that generate them, and to understand their significance for evolutionary explanation.


PLOS Genetics | 2009

Multiple Organ System Defects and Transcriptional Dysregulation in the Nipbl+/− Mouse, a Model of Cornelia de Lange Syndrome

Shimako Kawauchi; Anne L. Calof; Rosaysela Santos; Martha E. Lopez-Burks; Clint M. Young; Michelle P. Hoang; Abigail Chua; Taotao Lao; Mark S. Lechner; Jeremy A. Daniel; André Nussenzweig; Leonard M. Kitzes; Kyoko Yokomori; Benedikt Hallgrímsson; Arthur D. Lander

Cornelia de Lange Syndrome (CdLS) is a multi-organ system birth defects disorder linked, in at least half of cases, to heterozygous mutations in the NIPBL gene. In animals and fungi, orthologs of NIPBL regulate cohesin, a complex of proteins that is essential for chromosome cohesion and is also implicated in DNA repair and transcriptional regulation. Mice heterozygous for a gene-trap mutation in Nipbl were produced and exhibited defects characteristic of CdLS, including small size, craniofacial anomalies, microbrachycephaly, heart defects, hearing abnormalities, delayed bone maturation, reduced body fat, behavioral disturbances, and high mortality (75–80%) during the first weeks of life. These phenotypes arose despite a decrease in Nipbl transcript levels of only ∼30%, implying extreme sensitivity of development to small changes in Nipbl activity. Gene expression profiling demonstrated that Nipbl deficiency leads to modest but significant transcriptional dysregulation of many genes. Expression changes at the protocadherin beta (Pcdhb) locus, as well as at other loci, support the view that NIPBL influences long-range chromosomal regulatory interactions. In addition, evidence is presented that reduced expression of genes involved in adipogenic differentiation may underlie the low amounts of body fat observed both in Nipbl+/− mice and in individuals with CdLS.


Evolution & Development | 2007

Evolvability as the proper focus of evolutionary developmental biology

Jesse Love Hendrikse; Trish E. Parsons; Benedikt Hallgrímsson

SUMMARY Research conducted under the label of evolutionary developmental biology has tended to revolve around a few central issues such as modularity, integration, and canalization. Yet, as the field has grown, it has become increasingly difficult to define in terms of its central question and relation to broader evolutionary concerns. We argue that these central issues of evo‐devo gain their currency from connections to a central question that defines the field, and we propose that this central question is about the nature of evolvability. However, not all research currently carried out under the label of “evo‐devo” speaks to this focal concern. The aim of this article is therefore to argue for a precise formulation of evolutionary developmental biologys core question.


Science | 2013

Fine Tuning of Craniofacial Morphology by Distant-Acting Enhancers

Catia Attanasio; Alex S. Nord; Yiwen Zhu; Matthew J. Blow; Zirong Li; Denise K. Liberton; Harris Morrison; Ingrid Plajzer-Frick; Amy Holt; Roya Hosseini; Sengthavy Phouanenavong; Jennifer A. Akiyama; Malak Shoukry; Veena Afzal; Edward M. Rubin; David Fitzpatrick; Bing Ren; Benedikt Hallgrímsson; Len A. Pennacchio; Axel Visel

Introduction The shape of the face is one of the most distinctive features among humans, and differences in facial morphology have substantial implications in areas such as social interaction, psychology, forensics, and clinical genetics. Craniofacial shape is highly heritable, including the normal spectrum of morphological variation as well as susceptibility to major craniofacial birth defects. In this study, we explored the role of transcriptional enhancers in the development of the craniofacial complex. Our study is based on the rationale that such enhancers, which can be hundreds of kilobases away from their target genes, regulate the spatial patterns, levels, and timing of gene expression in normal development. Craniofacial developmental enhancers contribute to craniofacial morphology. We identified distant-acting transcriptional enhancers active in the developing craniofacial complex and studied their activity patterns in detail in transgenic mice (left). Selected enhancers were deleted from the genome in mice in order to examine their role in modulating craniofacial morphology, which revealed subtle but significant effects of enhancers on the shape of the face and skull (right). Methods To identify distant-acting enhancers active during craniofacial development, we used chromatin immunoprecipitation on embryonic mouse face tissue followed by sequencing to identify noncoding genome regions bound by the enhancer-associated p300 protein. We used LacZ reporter assays in transgenic mice and optical projection tomography (OPT) to determine three-dimensional expression patterns of a subset of these candidate enhancers. Last, we deleted three of the craniofacial enhancers from the mouse genome to assess their effect on gene expression and craniofacial morphology during development. Results We identified more than 4000 candidate enhancer sequences predicted to be active in the developing craniofacial complex. The majority of these sequences are at least partially conserved between humans and mice, and many are located in chromosomal regions associated with normal facial morphology or craniofacial birth defects. Characterization of more than 200 candidate enhancer sequences in transgenic mice revealed a remarkable spatial complexity of in vivo expression patterns. Targeted deletions of three craniofacial enhancers near genes with known roles in craniofacial development resulted in changes of expression of those genes as well as quantitatively subtle but definable alterations of craniofacial shape. Discussion Our analysis identifies enhancers that fine tune expression of genes during craniofacial development in mice. These results support that variation in the sequence or copy number of craniofacial enhancers may contribute to the spectrum of facial variation we find in human populations. Because many craniofacial enhancers are located in genome regions associated with craniofacial birth defects, such as clefts of the lip and palate, our results also offer a starting point for exploring the contribution of noncoding sequences to these disorders. No Two Faces Are Alike Gene disruptions can cause severe dysmorphologies like cleft palate, but what causes the subtle shifts in facial morphology that make each face unique? Studying mice, Attanasio et al. (1241006) identified over 4000 candidate genetic enhancers around genes driving craniofacial development. To avoid the challenge of recognizing individual mouse faces, optical projection tomography was used to link changes in facial morphology with alterations in the function of specific enhancers. Targeted deletion of individual craniofacial enhancers from the mouse genome sculpts facial shapes. The shape of the human face and skull is largely genetically determined. However, the genomic basis of craniofacial morphology is incompletely understood and hypothesized to involve protein-coding genes, as well as gene regulatory sequences. We used a combination of epigenomic profiling, in vivo characterization of candidate enhancer sequences in transgenic mice, and targeted deletion experiments to examine the role of distant-acting enhancers in craniofacial development. We identified complex regulatory landscapes consisting of enhancers that drive spatially complex developmental expression patterns. Analysis of mouse lines in which individual craniofacial enhancers had been deleted revealed significant alterations of craniofacial shape, demonstrating the functional importance of enhancers in defining face and skull morphology. These results demonstrate that enhancers are involved in craniofacial development and suggest that enhancer sequence variation contributes to the diversity of human facial morphology.


Evolution & Development | 2007

Epigenetic interactions and the structure of phenotypic variation in the cranium

Benedikt Hallgrímsson; Daniel E. Lieberman; Wei Liu; Alice Fiona Ford-Hutchinson; Frank R. Jirik

SUMMARY Understanding the developmental and genetic basis for evolutionarily significant morphological variation in complex phenotypes such as the mammalian skull is a challenge because of the sheer complexity of the factors involved. We hypothesize that even in this complex system, the expression of phenotypic variation is structured by the interaction of a few key developmental processes. To test this hypothesis, we created a highly variable sample of crania using four mouse mutants and their wild‐type controls from similar genetic backgrounds with developmental perturbations to particular cranial regions. Using geometric morphometric methods we compared patterns of size, shape, and integration in the sample within and between the basicranium, neurocranium, and face. The results highlight regular and predictable patterns of covariation among regions of the skull that presumably reflect the epigenetic influences of the genetic perturbations in the sample. Covariation between relative widths of adjoining regions is the most dominant factor, but there are other significant axes of covariation such as the relationship between neurocranial size and basicranial flexion. Although there are other sources of variation related to developmental perturbations not analyzed in this study, the patterns of covariation created by the epigenetic interactions evident in this sample may underlie larger scale evolutionary patterns in mammalian craniofacial form.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Development and the evolvability of human limbs

Nathan M. Young; Günter P. Wagner; Benedikt Hallgrímsson

The long legs and short arms of humans are distinctive for a primate, the result of selection acting in opposite directions on each limb at different points in our evolutionary history. This mosaic pattern challenges our understanding of the relationship of development and evolvability because limbs are serially homologous and genetic correlations should act as a significant constraint on their independent evolution. Here we test a developmental model of limb covariation in anthropoid primates and demonstrate that both humans and apes exhibit significantly reduced integration between limbs when compared to quadrupedal monkeys. This result indicates that fossil hominins likely escaped constraints on independent limb variation via reductions to genetic pleiotropy in an ape-like last common ancestor (LCA). This critical change in integration among hominoids, which is reflected in macroevolutionary differences in the disparity between limb lengths, facilitated selection for modern human limb proportions and demonstrates how development helps shape evolutionary change.


PLOS ONE | 2009

The Lysyl Oxidase Inhibitor, β-Aminopropionitrile, Diminishes the Metastatic Colonization Potential of Circulating Breast Cancer Cells

Alla Bondareva; Charlene M. Downey; Fábio J. Ayres; Wei Liu; Steven K. Boyd; Benedikt Hallgrímsson; Frank R. Jirik

Lysyl oxidase (LOX), an extracellular matrix remodeling enzyme, appears to have a role in promoting breast cancer cell motility and invasiveness. In addition, increased LOX expression has been correlated with decreases in both metastases-free, and overall survival in breast cancer patients. With this background, we studied the ability of β-aminopropionitrile (BAPN), an irreversible inhibitor of LOX, to regulate the metastatic colonization potential of the human breast cancer cell line, MDA-MB-231. BAPN was administered daily to mice starting either 1 day prior, on the same day as, or 7 days after intracardiac injection of luciferase expressing MDA-MB-231-Luc2 cells. Development of metastases was monitored by in vivo bioluminescence imaging, and tumor-induced osteolysis was assessed by micro-computed tomography (μCT). We found that BAPN administration was able to reduce the frequency of metastases. Thus, when BAPN treatment was initiated the day before, or on the same day as the intra-cardiac injection of tumor cells, the number of metastases was decreased by 44%, and 27%, and whole-body photon emission rates (reflective of total tumor burden) were diminished by 78%, and 45%, respectively. In contrast, BAPN had no effect on the growth of established metastases. Our findings suggest that LOX activity is required during extravasation and/or initial tissue colonization by circulating MDA-MB-231 cells, lending support to the idea that LOX inhibition might be useful in metastasis prevention.


Journal of Anatomy | 2008

Spatial packing, cranial base angulation, and craniofacial shape variation in the mammalian skull: testing a new model using mice

Daniel E. Lieberman; Benedikt Hallgrímsson; Wei Liu; Trish E. Parsons; Heather A. Jamniczky

The hypothesis that variation in craniofacial shape within and among species is influenced by spatial packing has a long history in comparative anatomy, particularly in terms of primates. This study develops and tests three alternative models of spatial packing to address how and to what extent the cranial base angle is influenced by variation in brain and facial size. The models are tested using mouse strains with different mutations affecting craniofacial growth. Although mice have distinctive crania with small brains, long faces, and retroflexed cranial bases, the results of the study indicate that the mouse cranial base flexes to accommodate larger brain size relative to cranial base length. In addition, the mouse cranial base also extends, but to a lesser degree, to accommodate larger face size relative to cranial base length. In addition, interactions between brain size, face size, and the widths and lengths of the components of the cranial base account for a large percentage of variation in cranial base angle. The results illustrate the degree to which the cranial base is centrally embedded within the covariation structure of the craniofacial complex as a whole.


The Journal of Experimental Biology | 2006

Trabecular bone in the bird knee responds with high sensitivity to changes in load orientation

Herman Pontzer; Daniel E. Lieberman; E.N. Momin; Maureen J. Devlin; John D. Polk; Benedikt Hallgrímsson; David M.L. Cooper

SUMMARY Wolffs law of trajectorial orientation proposes that trabecular struts align with the orientation of dominant compressive loads within a joint. Although widely considered in skeletal biology, Wolffs law has never been experimentally tested while controlling for ontogenetic stage, activity level, and species differences, all factors that may affect trabecular bone growth. Here we report an experimental test of Wolffs law using a within-species design in age-matched subjects experiencing physiologically normal levels of bone strain. Two age-matched groups of juvenile guinea fowl Numida meleagris ran on a treadmill set at either 0° (Level group) or 20° (Incline group), for 10 min per day over a 45-day treatment period. Birds running on the 20° inclined treadmill used more-flexed knees than those in the Level group at midstance (the point of peak ground reaction force). This difference in joint posture enabled us to test the sensitivity of trabecular alignment to altered load orientation in the knee. Using a new radon transform-based method for measuring trabecular orientation, our analysis shows that the fine trabecular bone in the distal femur has a high degree of correspondence between changes in joint angle and trabecular orientation. The sensitivity of this response supports the prediction that trabecular bone adapts dynamically to the orientation of peak compressive forces.


Development | 2010

Quantitative analyses link modulation of sonic hedgehog signaling to continuous variation in facial growth and shape

Nathan M. Young; H. Jonathan Chong; Diane Hu; Benedikt Hallgrímsson; Ralph S. Marcucio

Variation is an intrinsic feature of biological systems, yet developmental biology does not frequently address population-level phenomena. Sonic hedgehog (SHH) signaling activity in the vertebrate forebrain and face is thought to contribute to continuous variation in the morphology of the upper jaw, but despite its potential explanatory power, this idea has never been quantitatively assessed. Here, we test this hypothesis with an experimental design that is explicitly focused on the generation and measurement of variation in multivariate shape, tissue growth, cellular behavior and gene expression. We show that the majority of upper jaw shape variation can be explained by progressive changes in the spatial organization and mitotic activity of midfacial growth zones controlled by SHH signaling. In addition, nonlinearity between our treatment doses and phenotypic outcomes suggests that threshold effects in SHH signaling may play a role in variability in midfacial malformations such as holoprosencephaly (HPE). Together, these results provide novel insight into the generation of facial morphology, and demonstrate the value of quantifying variation for our understanding of development and disease.

Collaboration


Dive into the Benedikt Hallgrímsson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David M.L. Cooper

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar

Richard A. Spritz

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Christoph W. Sensen

Graz University of Technology

View shared research outputs
Top Co-Authors

Avatar

Diane Hu

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge