Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benedikt Heuser is active.

Publication


Featured researches published by Benedikt Heuser.


International Journal of Engine Research | 2016

Tailor-made fuels for future engine concepts

Fabian Hoppe; Benedikt Heuser; Matthias Thewes; Florian Kremer; Stefan Pischinger; Manuel Dahmen; Manuel Hechinger; Wolfgang Marquardt

Increasing carbon dioxide accumulation in earth’s atmosphere and the depletion of fossil resources pose huge challenges for our society and, in particular, for all stakeholders in the transportation sector. The Cluster of Excellence ‘Tailor-Made Fuels from Biomass’ at RWTH Aachen University establishes innovative and sustainable processes for the conversion of whole plants into molecularly well-defined fuels exhibiting tailored properties for low-temperature combustion engine processes, enabling high efficiency and low pollutant emissions. The concept of fuel design, that is, considering fuel’s molecular structure to be a design degree of freedom, aims for the simultaneous optimisation of fuel production and combustion systems. In the present contribution, three examples of tailor-made biofuels are presented. For spark ignition engines, both 2-methylfuran and 2-butanone show increased knock resistance compared to RON95 gasoline, thus enabling a higher compression ratio and an efficiency gain of up to 20% at full-load operation. Moreover, both fuels comprise a good mixture formation superior to the one of ethanol, especially under difficult boundary conditions. For compression ignition engines, 1-octanol enables a remarkable reduction in engine-out soot emissions compared to standard diesel fuel due to the high oxygen content and lower reactivity. This advantage is achieved without sacrificing the high indicated efficiency and low NOX emissions.


International Journal of Engine Research | 2015

Combustion and emission behavior of linear C8-oxygenates

Benedikt Heuser; Peter Mauermann; Rajendra Wankhade; Florian Kremer; Stefan Pischinger

Alternative fuels have become of great importance in order to secure a sustainable mobility within the next decades. Within the Cluster of Excellence, “Tailor-Made Fuels from Biomass” at RWTH Aachen University, several possible fuel candidates could be derived from (hemi-)cellulose by selective catalytic conversion. The proposed fuel candidates include furans, ethers, alcohols, and ketones. Experiments with the isomers di-n-butyl ether and 1-octanol have proven their suitability for diesel-type combustion. With di-n-butyl ether being prone to auto-ignition, overall hydrocarbon, carbon monoxide, and soot emissions are reduced compared to diesel. In contrast, the prolonged ignition delay with 1-octanol causes an increase in HC and CO emissions particularly at low engine loads. However, soot emissions are even below those of di-n-butyl ether. With regard to particulate matter, an Exhaust Emissions Particulate Sizer Spectrometer (EEPS™) has been utilized to investigate the particle size or number distribution. Compared to diesel, a reduction of the total particle number up to 80% was seen with the oxygenates next to a shift toward reduced particle mobility diameter. The HC emissions of both di-n-butyl ether and 1-octanol have been studied in detail by means of gas chromatography–mass spectrometry. As a main result, not only the general emission reduction potential of the biofuel alternatives 1-octanol and di-n-butyl ether can be shown with this work. Gas chromatography–mass spectrometry revealed that the composition of hydrocarbons emitted with the C8-oxygenates is almost equal to those with diesel, except for the unburned fuel that is present in the exhaust gas. Quantification showed that the carcinogenic component 1,3-butadiene increased with the alternative fuel candidates, whereas particularly benzene and ethyl benzene reduced. Since both di-n-butyl ether and 1-octanol are found in high proportions in the exhaust gas, the effects on the aftertreatment system have to be investigated in a subsequent campaign.


Energy and Environmental Science | 2018

Cleaner production of cleaner fuels: wind-to-wheel - environmental assessment of CO2-based oxymethylene ether as a drop-in fuel

Sarah Deutz; Dominik Bongartz; Benedikt Heuser; Arne Kätelhön; Luisa Schulze Langenhorst; Ahmad Omari; Marius Walters; Jürgen Klankermayer; Walter Leitner; Alexander Mitsos; Stefan Pischinger; André Bardow

The combustion of fossil fuels within the transportation sector is a key driver of global warming (GW) and leads to harmful emissions of nitrogen oxides (NOx) and particulates (soot). To reduce these negative impacts of the transportation sector, synthetic fuels are currently being developed, which are produced from renewable energy stored via catalytic conversion of hydrogen (H2) and carbon dioxide (CO2). A promising class of synthetic fuels are oxymethylene ethers (OMEs). This study conducts a prospective environmental assessment of an OME-based fuel using Life Cycle Assessment (LCA). We investigate an OME1-diesel-blend (OME1-blend), where OME1 replaces 24 mass% of diesel fuel. Such an OME1-blend could be a first step towards an OME transition. For the production of OME1 from CO2-based methanol, we consider both the established route via condensation with formaldehyde and a novel direct pathway based on catalytic combination with CO2 and hydrogen. To close the carbon loop, CO2 supply via biogas and direct air capture is considered. In a best-case scenario, hydrogen is produced by water electrolysis using electricity from wind power in the European Union as an input. The direct pathway reduces the required process steps from three to two and is shown to allow for an improved utilization of the energy provided by hydrogen: the exergy efficiency is increased from 74% to 86%. For combustion, we conducted experiments in a single cylinder engine to determine the full spectrum of engine-related emissions. The engine data provide the input for simulations of the cumulative raw emissions over the Worldwide Harmonized Light Vehicles Test Procedures (WLTP) cycle for a mid-size passenger vehicle. Our well-to-wheel LCA shows that OME1 has the potential to serve as an almost carbon-neutral blending component: replacing 24 mass% of diesel by OME1 could reduce the GW impact by 22% and the emissions of NOx and soot even by 43% and 75%, respectively. The key to achieving these benefits is the integration of renewable energy in hydrogen production. The cumulative energy demand (CED) over the life cycle is doubled compared to fossil diesel. With sufficient renewable electricity available, OME1-blends may serve as a promising first step towards a more sustainable transportation sector.


International Journal of Engine Research | 2018

Hot surface pre-ignition in direct injection spark ignition engines investigations with tailor-made fuels from biomass

Oguz Budak; Benedikt Heuser; Ultan Burke; Karl Alexander Heufer; Fabian Hoppe; Stefan Pischinger

Two promising alternative fuel candidates for spark-ignition engines, 2-butanone and 2-methylfuran, have been identified in the context of the Cluster for Excellence ‘Tailor-Made Fuels from Biomass’. To further explore the potential of these fuels for spark-ignition engine application, experimental and numerical investigations into the occurrence of the abnormal combustion phenomenon of hot surface–induced pre-ignition have been conducted, with pure ethanol, RON97 E10, and pure iso-octane as reference fuels. For the experimental investigations, a single-cylinder engine with a compression ratio of 11, equipped with a glow-plug to create a hot spot in the cylinder, was operated at 1500 r/min and 1500 mbar charge pressure. Each fuel was tested with several glow-plug temperatures until a minimum pre-ignition frequency of 2% was observed. The results show that 2-methylfuran reaches its 2% pre-ignition frequency at a glow-plug temperature of 880 °C, which is 16 °C higher than the 2% pre-ignition frequency of ethanol at 864 °C and 10 °C less than RON97 E10 with 890 °C. Iso-octane showed the lowest pre-ignition resistance with a 2% pre-ignition frequency at a glow-plug temperature of 853 °C, and 2-butanone was most resistant against pre-ignition in this study with a 2% pre-ignition frequency at 932 °C. Further numerical investigations, including zero-dimensional ignition delay time calculations and three-dimensional computational fluid dynamics simulations, revealed a clear connection between the surface ignition frequency of these fuels and their reaction kinetics.


International Journal of Engine Research | 2017

Fuel formulation effects on the soot morphology and diesel particulate filter regeneration in a future optimized high-efficiency combustion system

Om Parkash Bhardwaj; Bernhard Lüers; Benedikt Heuser; Bastian Holderbaum; Stefan Pischinger

The focus of research is shifting toward development of new engine fuels for optimized combustion systems. The altered chemical structure of these new fuels may impact their thermal decomposition chemistry during the ignition process and hence the in-cylinder conditions for particulate formation and post oxidation. This work fundamentally focuses on the influence of the fuel properties on particulate matter morphology and, thereby, the regeneration behavior of diesel particulate filters. The experiments for particulate analysis were conducted with a single-cylinder diesel research engine designed for future passenger car applications. A detailed analysis of soot characteristics and its consequences on diesel particulate filter behavior were studied at part-load engine operation at EU 6 engine-out nitrogen oxide level. Next to standard EN590 diesel, a paraffinic fuel was investigated as non-oxygenated biofuel candidate. A blend of the 2-methyltetrahydrofuran and di-n-butylether was studied as tailor-made oxygenated biomass-derived fuel candidate. With all fuels, samples of state-of-the-art diesel particulate filter were loaded at the research engine. In succession, the regeneration of the filters was investigated at a laboratory gas bench. Furthermore, the primary particle size, the total number concentration, and size-based number distribution were investigated in detail by means of a transmission electron microscope, condensation particle counter, and Engine Exhaust Particle Sizer™, respectively. Furthermore, the graphitic character of the soot structure was analyzed by optical measurements such as absorption coefficient. It was found that the soot oxidation temperature was decreased by ∼10 °C and ∼65 °C with the paraffinic fuel and the blend of 2-methyltetrahydrofuran and di-n-butylether, respectively, compared to conventional diesel fuel. Overall, the results indicate that with specific tailored fuels not only the total particle mass and number could be reduced but, with altering the soot structure and composition, also the energy requirement for diesel particulate filter regeneration can be reduced.


Archive | 2014

Potential of the combustion engine to reach future CO2 emissions

Stefan Pischinger; Benedikt Heuser

Within the upcoming emission legislations, engine exhaust pollutants and the fuel consumption respectively CO2 emissions will become more stringent worldwide. Since there is typically a trade-off between reducing tailpipe pollutants and the car’s fuel efficiency meeting both limits simultaneously will be challenging. However, the CO2- saving potential of both gasoline and diesel engines is not outbid yet but further improving the engines efficiency will require an accurate balancing of their benefits and costs.


SAE International journal of engines | 2013

Vehicle Demonstration of Naphtha Fuel Achieving Both High Efficiency and Drivability with EURO6 Engine-Out NOx Emission

Junseok Chang; Gautam Kalghatgi; Amer Amer; Philipp Adomeit; Hans Rohs; Benedikt Heuser


SAE 2014 World Congress & Exhibition | 2014

C8-Oxygenates for Clean Diesel Combustion

Benedikt Heuser; Thomas Laible; Markus Jakob; Florian Kremer; Stefan Pischinger


SAE International Journal of Fuels and Lubricants | 2013

Optimization of Diesel Combustion and Emissions with Tailor-Made Fuels from Biomass

Benedikt Heuser; Florian Kremer; Stefan Pischinger; Jürgen Klankermayer


Energy Conversion and Management | 2016

Influence of fuel properties on fundamental spray characteristics and soot emissions using different tailor-made fuels from biomass

Antonio García; Javier Monsalve-Serrano; Benedikt Heuser; Markus Jakob; Florian Kremer; Stefan Pischinger

Collaboration


Dive into the Benedikt Heuser's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ahmad Omari

RWTH Aachen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sarah Deutz

RWTH Aachen University

View shared research outputs
Researchain Logo
Decentralizing Knowledge