Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benedikt Lauber is active.

Publication


Featured researches published by Benedikt Lauber.


Scandinavian Journal of Medicine & Science in Sports | 2012

The drop height determines neuromuscular adaptations and changes in jump performance in stretch-shortening cycle training.

Wolfgang Taube; Christian Leukel; Benedikt Lauber; Albert Gollhofer

There is an ongoing discussion about how to improve jump performance most efficiently with plyometric training. It has been proposed that drop height influences the outcome, although longitudinal studies are missing. Based on cross‐sectional drop jump studies showing height‐dependent Hoffmann (H)‐reflex activities, we hypothesized that the drop height should influence the neuromuscular activity and thus, the training result. Thirty‐three subjects participated as a control or in one of two stretch‐shortening cycle (SSC) interventions. Subjects either trained for 4 weeks doing drop jumps from 30, 50, and 75 cm drop heights (SSC1) or completed the same amount of jumps exclusively from 30 cm (SSC2). During training and testing (from 30, 50, and 75 cm), subjects were instructed to minimize the duration of ground contact and to maximize their rebound height. Rebound heights were significantly augmented after SSC1, but a trend was only observed after SSC2. In contrast, the duration of ground contact increased after SSC1 but decreased after SSC2. The performance index (rebound height/duration of ground contact) improved similarly after SSC1 (+14%) and SSC2 (+14%). Changes in performance were accompanied by neuromuscular adaptations: for SSC1, activity of the soleus increased toward take‐off (between 120 and 170 ms after touchdown), whereas SSC2‐trained subjects showed enhanced activity shortly after ground contact (20–70 ms after touch down). The present study demonstrates a strong link among drop height, neuromuscular adaptation, and performance in SSC training. As the improvement in the performance index was no different after SSC1 or SSC2, the decision whether to apply SSC1 or SSC2 should depend on the specific requirements of the sports discipline.


European Journal of Sport Science | 2014

Improving motor performance: Selected aspects of augmented feedback in exercise and health

Benedikt Lauber; Martin Keller

Abstract Augmented feedback (AF) can play an important role when learning or improving a motor skill. As research dealing with AF is broad and diverse, the purpose of this review is to provide the reader with an overview of the use of AF in exercise, motor learning and injury prevention research with respect to how it can be presented, its informational content and the limitations. The term ‘augmented’ feedback is used because additional information provided by an external source is added to the task-intrinsic feedback that originates from a persons sensory system. In recent decades, numerous studies from various fields within sport science (exercise science, sports medicine, motor control and learning, psychology etc.) have investigated the potential influence of AF on performance improvements. The first part of the review gives a theoretical background on feedback in general but particularly AF. The second part tries to highlight the differences between feedback that is given as knowledge of result and knowledge of performance. The third part introduces studies which have applied AF in exercise and prevention settings. Finally, the limitations of feedback research and the possible reasons for the diverging findings are discussed. The focus of this review lies mainly on the positive influence of AF on motor performance. Underlying neuronal adaptations and theoretical assumptions from learning theories are addressed briefly.


Sports Medicine | 2015

Changes in Standing and Walking Performance Under Dual-Task Conditions Across the Lifespan

Jan Ruffieux; Martin Keller; Benedikt Lauber; Wolfgang Taube

Simultaneous performance of a postural and a concurrent task is rather unproblematic as long as the postural task is executed in an automatic way. However, in situations where postural control requires more central processing, cognitive resources may be exceeded by the addition of an attentionally demanding task. This may lead to interference between the two tasks, manifested in a decreased performance in one or both tasks (dual-task costs). Owing to changes in attentional demands of postural tasks as well as processing capacities across the lifespan, it might be assumed that dual-task costs are particularly pronounced in children and older adults probably leading to a U-shaped pattern for dual-task costs as a function of age. However, these changes in the ability of dual-tasking posture from childhood to old age have not yet been systematically reviewed. Therefore, Web of Science and PubMed databases were searched for studies comparing dual-task performance with one task being standing or walking in healthy groups of young adults and either children or older adults. Seventy-nine studies met inclusion criteria. For older adults, the expected increase in dual-task costs could be confirmed. In contrast, in children there was only feeble evidence for a trend towards enlarged dual-task costs. More good-quality studies comparing dual-task ability in children, young, and, ideally, also older adults within the same paradigm are needed to draw unambiguous conclusions about lifespan development of dual-task performance in postural tasks. There is evidence that, in older adults, dual-task performance can be improved by training. For the other age groups, these effects have yet to be investigated.


Medicine and Science in Sports and Exercise | 2013

Sustained Cycling Exercise Increases Intracortical Inhibition

Simranjit K. Sidhu; Benedikt Lauber; Andrew G. Cresswell; Timothy J. Carroll

PURPOSE In the current study, we measured EMG suppression induced by subthreshold transcranial magnetic stimulation (TMS) to investigate the effects of sustained cycling exercise on intracortical inhibition. METHODS Sixteen subjects cycled at 75% of their maximum workload (Wmax) for 30 min, during which subthreshold TMS was applied at a defined crank angle where vastus lateralis (VL) EMG amplitude was increasing and approximately 50% of its recorded maximum. Subthreshold TMS was also applied during nonfatiguing control cycling bouts at 75% and 37.5% of Wmaxbefore sustained cycling. RESULTS Although EMG in VL during control cycling at 37.5% Wmax was approximately half that during cycling at 75% Wmax (P ≤ 0.05), the amount of EMG suppression was not different between workloads (P > 0.05). EMG amplitude in VL recorded in the last 5 min of sustained cycling was not different from the first 5 min (P > 0.05), whereas the amount of EMG suppression at the end of the sustained cycling was significantly greater than that at the start (P ≤ 0.05). CONCLUSIONS The increase in TMS-evoked EMG suppression during sustained cycling implies an increase in the excitability of the intracortical inhibitory interneurons during the exercise. The observed increase in intracortical inhibition is similar to that observed during sustained single joint contractions, suggesting that changes in the responsiveness of intracortical inhibitory interneurons are similar during locomotor exercise and static single joint contractions.


British Journal of Sports Medicine | 2014

Mechanical instability destabilises the ankle joint directly in the ankle-sprain mechanism

Dominic Gehring; Katrin Faschian; Benedikt Lauber; Heinz Lohrer; Tanja Nauck; Albert Gollhofer

Background Despite massive research efforts, it remains unclear how mechanical ankle instability (MAI) and functional ankle instability (FAI) affect joint control in the situation of ankle sprain. Thus, the purpose of this study was to evaluate whether individuals with MAI have deficits in stabilising their ankle joint in a close-to-injury situation compared with those with FAI and healthy controls. Methods Ankle-joint control was assessed by means of three-dimensional motion analysis and electromyography in participants with FAI and MAI (n=19), in participants with pure FAI (n=9) and in healthy controls (n=18). Close-to-injury situations were simulated during standing, walking and jumping by means of a custom-made tilt platform. Results Individuals with FAI and MAI displayed significantly greater maximum ankle inversion angles (+5°) and inversion velocities (+50°/s) in the walking and jumping conditions compared to those with pure FAI and controls. Furthermore, individuals in the FAI and MAI group showed a significantly decreased pre-activation of the peroneus longus muscle during jumping compared to those with FAI. No differences between groups were found for plantar flexion and internal rotation, or for muscle activities following tilting of the platform. Conclusions The present study demonstrates that MAI is characterised by impairments of ankle-joint control in close-to-injury situations. This could make these individuals more prone to recurrent ankle sprains, and suggests the need for additional mechanical support such as braces or even surgery. In addition, the study highlights the fact that dynamic experimental test conditions in the acting participant are needed to further unravel the mystery of chronic ankle instability.


Physiological Reports | 2014

Reciprocal activation of gastrocnemius and soleus motor units is associated with fascicle length change during knee flexion

Benedikt Lauber; Glen A. Lichtwark; Andrew G. Cresswell

While medial gastrocnemius (MG) and soleus (SOL) are considered synergists, they are anatomically exclusive in that SOL crosses only the ankle, while MG crosses both the knee and ankle. Due to the force‐length properties of both active and passive structures, activation of SOL and MG must be constantly regulated to provide the required joint torques for any planned movement. As such, the aim of this study was to investigate the neural regulation of MG and SOL when independently changing their length by changing only the knee joint angle, thus exclusively altering the length of MG fibers. MG and SOL motor units (MU) were recorded intramuscularly along with ultrasound imaging of MG and SOL fascicle lengths, while moving the knee through 60° of rotation and maintaining a low level of voluntary plantar flexor torque. The results showed a reciprocal activation of MG and SOL as the knee was moved into flexion and extension. A clear reduction in MG MU firing rates occurred as the knee was flexed (MG fascicles shortening), with de‐recruitment of most MG MU occurring at close to full knee flexion. A concomitant increase in SOL MU activity was observed while no change in the length of its fascicles was found. The opposite effects were found when the knee was moved into extension. A strong correlation (ICC = 0.78) was found between the fascicle length at which MG MUs were de‐recruited and subsequently re‐recruited. This was stronger than the relationship of de‐recruitment and re‐recruitment with knee angle (ICC = 0.52), indicating that in this instance, muscle fascicle length rather than joint angle is more influential in regulating MG recruitment. Such a reciprocal arrangement like the one presented here for SOL and MG is essential for human voluntary movements such as walking or cycling.


Human Movement Science | 2014

Jump performance and augmented feedback: Immediate benefits and long-term training effects

Martin Keller; Benedikt Lauber; Dominic Gehring; Christian Leukel; Wolfgang Taube

Drop jumps and their adaptations to training have been extensively investigated. However, the influence of augmented feedback (aF) on stretch-shortening cycle (SSC) was not scrutinized so far despite the well-known positive effects of aF on motor performance and motor learning. The aim of the present study was therefore to investigate the effects of aF by evaluating immediate within-session effects and long-term adaptations. 34 participants were assigned to three groups that trained drop jumps with different relative frequencies of aF about their jump height: 100%, 50%, or 0%. A significant within-session effect of aF on jump height was observed before and also after the training period (pre: +4.6%; post: +2.6%). In the long-term (comparing pre- to post-measurement), the 100% group showed the greatest increase in jump height (+14%), followed by the 50% (+10%) and the 0% group (+6%). The importance of aF on drop jumps is therefore twofold: (i) to immediately increase jump performance and (ii) to improve long-term training efficacy. In contrast to the proposition of the guidance hypothesis, high frequency of aF seems to be beneficial when maximizing SSC-performance. As jump height cannot be quantified without objective technical measures it is recommended to include them into daily training.


PLOS ONE | 2012

Time to Task Failure and Motor Cortical Activity Depend on the Type of Feedback in Visuomotor Tasks

Benedikt Lauber; Christian Leukel; Albert Gollhofer; Wolfgang Taube

The present study aimed to elucidate whether the type of feedback influences the performance and the motor cortical activity when executing identical visuomotor tasks. For this purpose, time to task failure was measured during position- and force-controlled muscular contractions. Subjects received either visual feedback about the force produced by pressing a force transducer or about the actual position between thumb and index finger. Participants were instructed to either match the force level of 30% MVC or the finger position corresponding to the thumb and index finger angle at this contraction intensity. Subjects demonstrated a shorter time to task failure when they were provided with feedback about their joint position (11.5±6.2 min) instead of force feedback (19.2±12.8 min; P = 0.01). To test differences in motor cortical activity between position- and force-controlled contractions, subthreshold transcranial magnetic stimulation (subTMS) was applied while executing submaximal (20% MVC) contractions. SubTMS resulted in a suppression of the first dorsal interosseus muscle (FDI) EMG in both tasks. However, the mean suppression for the position-controlled task was significantly greater (18.6±9.4% vs. 13.3±7.5%; P = 0.025) and lasted longer (13.9±7.5 ms vs. 9.3±4.3 ms; P = 0.024) compared to the force-controlled task. The FDI background EMG obtained without stimulation was comparable in all conditions. The present results demonstrate that the presentation of different feedback modalities influences the time to task failure as well as the cortical activity. As only the feedback was altered but not the mechanics of the task, the present results add to the body of evidence that suggests that the central nervous system processes force and position information in different ways.


Scandinavian Journal of Medicine & Science in Sports | 2011

Spinal reflex plasticity in response to alpine skiing in the elderly

Benedikt Lauber; Martin Keller; Albert Gollhofer; Erich Müller; Wolfgang Taube

The present study was designed to assess the influence of 12 weeks (28.5±2.6 skiing days) of alpine skiing on spinal reflex plasticity, strength and postural control in senior citizens. Therefore, soleus H‐reflexes and postural stability were measured during bipedal quiet and unstable stance in 22 (12 male and 10 female) elderly subjects aged 66.6±1 years. Furthermore, the maximal isometric force was determined in a leg press. The results showed an increased H‐reflex excitability after the training (+39%; P<0.05) while no changes occurred in the background EMG. The postural sway decreased after training (−6.6 cm; P≤0.05) and the maximal force increased (+16.1%; P<0.05). No adaptations in any parameter could be observed in the control group. The present study demonstrated that skiing training was effective to alter the spinal reflex activity in elderly individuals. The increased H‐reflexes correspond to adaptations known from strength training in young subjects. It may be assumed that alpine skiing induced a functional adaptation in that subjects have learned to integrate Ia afferent feedback more efficiently to ensure adequate motoneuron output.


Journal of Sports Sciences | 2015

Enhanced jump performance when providing augmented feedback compared to an external or internal focus of attention

Martin Keller; Benedikt Lauber; Marius Gottschalk; Wolfgang Taube

Abstract Factors such as an external focus of attention (EF) and augmented feedback (AF) have been shown to improve performance. However, the efficacy of providing AF to enhance motor performance has never been compared with the effects of an EF or an internal focus of attention (IF). Therefore, the aim of the present study was to identify which of the three conditions (AF, EF or IF) leads to the highest performance in a countermovement jump (CMJ). Nineteen volunteers performed 12 series of 8 maximum CMJs. Changes in jump height between conditions and within the series were analysed. Jump heights differed between conditions (P < 0.001), resulting in best performance with AF (32.04 ± 7.11 cm), followed by EF (31.21 ± 6.67 cm) and IF (30.77 ± 6.87 cm). Significantly different (P < 0.001) within-series effects of higher jump heights at the end of the series in AF (+1.60%) and lower jump heights at the end of the series in EF (−1.79%) and IF (−1.68%) were observed. Muscle activity did not differ between conditions. The differences between conditions and within the series provide evidence that AF leads to higher performance and better progression within one series than EF and IF. Consequently, AF seems to outperform EF and IF when maximising jump height.

Collaboration


Dive into the Benedikt Lauber's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tanja Nauck

Goethe University Frankfurt

View shared research outputs
Researchain Logo
Decentralizing Knowledge