Benedikt Obermayer
Ludwig Maximilian University of Munich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Benedikt Obermayer.
Nucleic Acids Research | 2011
Kevin Leu; Benedikt Obermayer; Sudha Rajamani; Ulrich Gerland; Irene A. Chen
In the early ‘RNA world’ stage of life, RNA stored genetic information and catalyzed chemical reactions. However, the RNA world eventually gave rise to the DNA–RNA–protein world, and this transition included the ‘genetic takeover’ of information storage by DNA. We investigated evolutionary advantages for using DNA as the genetic material. The error rate of replication imposes a fundamental limit on the amount of information that can be stored in the genome, as mutations degrade information. We compared misincorporation rates of RNA and DNA in experimental non-enzymatic polymerization and calculated the lowest possible error rates from a thermodynamic model. Both analyses found that RNA replication was intrinsically error-prone compared to DNA, suggesting that total genomic information could increase after the transition to DNA. Analysis of the transitional RNA/DNA hybrid duplexes showed that copying RNA into DNA had similar fidelity to RNA replication, so information could be maintained during the genetic takeover. However, copying DNA into RNA was very error-prone, suggesting that attempts to return to the RNA world would result in a considerable loss of information. Therefore, the genetic takeover may have been driven by a combination of increased chemical stability, increased genome size and irreversibility.
Journal of Molecular Evolution | 2013
Nikola A. Ivica; Benedikt Obermayer; Gregory W. Campbell; Sudha Rajamani; Ulrich Gerland; Irene A. Chen
The hypothesized dual roles of RNA as both information carrier and biocatalyst during the earliest stages of life require a combination of features: good templating ability (for replication) and stable folding (for ribozymes). However, this poses the following paradox: well-folded sequences are poor templates for copying, but poorly folded sequences are unlikely to be good ribozymes. Here, we describe a strategy to overcome this dilemma through G:U wobble pairing in RNA. Unlike Watson–Crick base pairs, wobble pairs contribute highly to the energetic stability of the folded structure of their sequence, but only slightly, if at all, to the stability of the folded reverse complement. Sequences in the RNA World might thereby combine stable folding of the ribozyme with an unstructured, reverse-complementary genome, resulting in a “division of labor” between the strands. We demonstrate this strategy using computational simulations of RNA folding and an experimental model of early replication, nonenzymatic template-directed RNA primer extension. Additional study is needed to solve other problems associated with a complete replication cycle, including separation of strands after copying. Interestingly, viroid RNA sequences, which have been suggested to be relics of an RNA World (Diener, Proc Natl Acad Sci USA 86:9370–9374, 1989), also show significant asymmetry in folding energy between the infectious (+) and template (−) strands due to G:U pairing, suggesting that this strategy may even be used by replicators in the present day.
Physical Review E | 2014
Philipp S. Lang; Benedikt Obermayer; Erwin Frey
Polymers exposed to shear flow exhibit a remarkably rich tumbling dynamics. While rigid rods rotate on Jeffery orbits, a flexible polymer stretches and coils up during tumbling. Theoretical results show that in both of these asymptotic regimes the corresponding tumbling frequency f(c) in a linear shear flow of strength γ scales as a power law Wi(2/3) in the Weissenberg number Wi = γτ, where τ is a characteristic time of the polymers relaxational dynamics. For a flexible polymer these theoretical results are well confirmed by a large body of experimental single molecule studies. However, for the intermediate semiflexible regime, especially relevant for cytoskeletal filaments like F-actin and microtubules, the situation is less clear. While recent experiments on single F-actin filaments are still interpreted within the classical Wi(2/3) scaling law, theoretical results indicated deviations from it. Here we perform extensive Brownian dynamics simulations to explore the tumbling dynamics of semiflexible polymers over a broad range of shear strength and the polymers persistence length l(p). We find that the Weissenberg number alone does not suffice to fully characterize the tumbling dynamics, and the classical scaling law breaks down. Instead, both the polymers stiffness and the shear rate are relevant control parameters. Based on our Brownian dynamics simulations we postulate that in the parameter range most relevant for cytoskeletal filaments there is a distinct scaling behavior with f(c) τ* = Wi(3/4)f(c)(x) with Wi = γτ* and the scaling variable x = (l(p)/L)(Wi)(-1/3); here τ* is the time the polymers center of mass requires to diffuse its own contour length L. Comparing these results with experimental data on F-actin we find that the Wi(3/4) scaling law agrees quantitatively significantly better with the data than the classical Wi(2/3) law. Finally, we extend our results to single ring polymers in shear flow, and find similar results as for linear polymers with slightly different power laws.
Physical Review E | 2011
Florian Thüroff; Benedikt Obermayer; Erwin Frey
The longitudinal response of single semiflexible polymers to sudden changes in externally applied forces is known to be controlled by the propagation and relaxation of backbone tension. Under many experimental circumstances, realized, for example, in nanofluidic devices or in polymeric networks or solutions, these polymers are effectively confined in a channel- or tubelike geometry. By means of heuristic scaling laws and rigorous analytical theory, we analyze the tension dynamics of confined semiflexible polymers for various generic experimental setups. It turns out that in contrast to the well-known linear response, the influence of confinement on the nonlinear dynamics can largely be described as that of an effective prestress. We also study the free relaxation of an initially confined chain, finding a surprising superlinear ~t(9/8) growth law for the change in end-to-end distance at short times.
Physical Review Letters | 2011
Benedikt Obermayer; Hubert Krammer; Dieter Braun; Ulrich Gerland
A poorly understood step in the transition from a chemical to a biological world is the emergence of self-replicating molecular systems. We study how a precursor for such a replicator might arise in a hydrothermal RNA reactor, which accumulates longer sequences from unbiased monomer influx and random ligation. In the reactor, intra- and intermolecular base pairing locally protects from random cleavage. By analyzing stochastic simulations, we find temporal sequence correlations that constitute a signature of information transmission, weaker but of the same form as in a true replicator.
Physical Review E | 2009
Benedikt Obermayer; Erwin Frey
The dynamic response of prestressed semiflexible biopolymers is characterized by the propagation and relaxation of tension, which arises due to the near inextensibility of a stiff backbone. It is coupled to the dynamics of contour length stored in thermal undulations but also to the local relaxation of elongational strain. We present a systematic theory of tension dynamics for stiff yet extensible wormlike chains. Our results show that even moderate prestress gives rise to distinct Rouse-like extensibility signatures in the high-frequency viscoelastic response.
European Physical Journal E | 2007
Benedikt Obermayer; Oskar Hallatschek; Erwin Frey; Klaus Kroy
Abstract.We analyze the nonequilibrium dynamics of single inextensible semiflexible biopolymers as stretching forces are applied at the ends. Based on different (contradicting) heuristic arguments, various scaling laws have been proposed for the propagation speed of the backbone tension which is induced in response to stretching. Here, we employ a newly developed unified theory to systematically substantiate, restrict, and extend these approaches. Introducing the practically relevant scenario of a chain equilibrated under some prestretching force fpre that is suddenly exposed to a different external force fext at the ends, we give a concise physical explanation of the underlying relaxation processes by means of an intuitive blob picture. We discuss the corresponding intermediate asymptotics, derive results for experimentally relevant observables, and support our conclusions by numerical solutions of the coarse-grained equations of motion for the tension.
Physical Review Letters | 2007
Benedikt Obermayer; Oskar Hallatschek
The time-dependent transverse response of stiff inextensible polymers is well understood on the linear level, where transverse and longitudinal displacements evolve independently. We show that for times beyond a characteristic time tf, longitudinal friction considerably weakens the response compared to the widely used linear response predictions. The corresponding feedback mechanism is explained by scaling arguments and quantified by a systematic theory. Our scaling laws and exact solutions for the transverse response apply to cytoskeletal filaments as well as DNA under tension.
New Journal of Physics | 2014
Benedikt Obermayer; Erel Levine
Correlations between two variables of a high-dimensional system can be indicative of an underlying interaction, but can also result from indirect effects. Inverse Ising inference is a method to distinguish one from the other. Essentially, the parameters of the least constrained statistical model are learned from the observed correlations such that direct interactions can be separated from indirect correlations. Among many other applications, this approach has been helpful for protein structure prediction, because residues which interact in the 3D structure often show correlated substitutions in a multiple sequence alignment. In this context, samples used for inference are not independent but share an evolutionary history on a phylogenetic tree. Here, we discuss the effects of correlations between samples on global inference. Such correlations could arise due to phylogeny but also via other slow dynamical processes. We present a simple analytical model to address the resulting inference biases, and develop an exact method accounting for background correlations in alignment data by combining phylogenetic modeling with an adaptive cluster expansion algorithm. We find that popular reweighting schemes are only marginally effective at removing phylogenetic bias, suggest a rescaling strategy that yields better results, and provide evidence that our conclusions carry over to the frequently used mean-field approach to the inverse Ising problem.
EPL | 2009
Benedikt Obermayer; Erwin Frey
It is a long-standing question in origin-of-life research whether the information content of replicating molecules can be maintained in the presence of replication errors. Extending standard quasispecies models of non-enzymatic replication, we analyze highly specific enzymatic self-replication mediated through an otherwise neutral recognition region, which leads to frequency-dependent replication rates. We find a significant reduction of the maximally tolerable error rate, because the replication rate of the fittest molecules decreases with the fraction of functional enzymes. Our analysis is extended to hypercyclic couplings as an example for catalytic networks.