Beng Ti Tey
Monash University Malaysia Campus
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Beng Ti Tey.
Biotechnology and Bioengineering | 2000
Beng Ti Tey; R. P. Singh; Lucia Piredda; Mauro Piacentini
The influence of Bcl-2 expression on the robustness of a CHO cell line (22H11) developed for the industrial production of a chimeric antibody was evaluated. Western blot analysis following transfection with the expression vector unexpectedly revealed upregulation of endogenous Bcl-2 expression in the control (Neo) cell line in response to exposure to the selection drug G418. This indicated that geneticin may function by inducing apoptosis in cells not carrying the control plasmid or expressing very low levels of survival genes. Thus, exposure to the drug enriched the culture for a population of cells which expressed enhanced levels of endogenous Bcl-2. In batch cultures, ectopic bcl-2 expression resulted in a 75% increase in maximum viable cell density over control cultures. Moreover, the rate of decrease in viability in the Bcl-2 cultures was significantly lower than that in the control cultures. After 18 days, the Bcl-2 viability was around 90%, compared to 20% in the control cultures. Evaluation of the mechanism of cell death revealed very few cells with classical apoptotic morphology. Around 10% were clearly necrotic, but the majority of dead cells were seen as chromatin free but otherwise relatively intact structures. Because of the relatively low rate of cell death in both cell lines, few cells were observed in the transitional, easily identifiable early stages of apoptosis. However, DNA gel electrophoresis revealed a clear ladder-pattern, but only in the control cultures, thus confirming high levels of apoptotic death. Antibody concentrations during both sets of cultures were very similar, both during the growth and death phases, with a maximum titer of around 40 microgram/ml. Analysis of Bcl-2 expression by flow cytometry revealed that the cultures contained two populations of cells: a large population which expressed high levels of Bcl-2 and a relatively smaller low-expressing population. During the course of the batch, the smaller, low-expressing population declined in frequency, suggesting that these cells were more sensitive to cell death. In addition, the mean level of Bcl-2 expression in the overexpressing population also declined significantly, presumably reflecting the exhaustion of precursors for protein synthesis following nutrient depletion. Importantly, when cells were taken from day 40 of the significantly extended Bcl-2 batch cultures, they immediately proliferated, confirming that they had retained their replicative potential. Cultivation of the cells in basal medium lacking (individually) serum, all amino acids, glutamate/asparagine, and, finally, glucose, resulted in relatively lower viable cell numbers and viability in the control cell line compared to the Bcl-2 cell line. Exposure of cells to ammonia toxicity also revealed the relative robustness of the bcl-2 transfected cells. When growth was arrested by treatment with 4 mM thymidine, Bcl-2 overexpressing cells exhibit a viability of over 80% after 5 days in culture, compared to only 40% in the control cell line. However, under growth-arrested conditions, there was no major difference in antibody titer between the two cell lines.
Journal of Biotechnology | 2000
Beng Ti Tey; R. P. Singh; Lucia Piredda; Mauro Piacentini
The influence of Bcl-2 expression on the suppression of apoptosis during the cultivation of an NS0 cell line expressing a chimeric antibody was investigated. Following selection of transfectants in medium containing G418, Western analysis revealed evidence of some up-regulation of endogenous Bcl-2 expression even in the control vector transfectants. Cultivation of the two cell lines in suspension batch cultures clearly demonstrated the enhanced robustness of the bcl-2 vector transfected cells. Suppression of apoptosis resulted in an approximately 20% increase in maximum viable cell number, and a doubling in culture duration compared to the control transfected cells. However, despite the significant affect on viability, Bcl-2 expression did not result in an increase in final antibody titre in comparison with the control cell line. Exposure of cells to various nutrient limited conditions further emphasised the influence of Bcl-2 on cell survival. After 3 days of exposure to serum, glucose, glutamate and asparagine deprivation, the viable cell number and viability were significantly higher in the bcl-2 transfected cell line. When control cells were deprived of all amino acids, there was a complete loss of viability and viable cell number within 3 days. By contrast, the bcl-2 transfected cell line retained greater than 75% of the initial viable cell number and about 70% viability. In response to exposure to 8 mM thymidine (a cytostatic agent) the control cell line underwent complete loss of viability and viable cell number after 6 days. This compared with 18 days for complete loss of viability in the bcl-2 transfected cell line. As under batch culture conditions, there was no difference between the two cell lines in final antibody titre, which indicated that MAb synthesis is limited by nutrient availability during the latter stages of culture in both cases. When fed batch cultures were carried out using a concentrated essential amino acid feed, the bcl-2 cell line exhibited a 60% increase in maximum viable cell number and a 50% increase in culture duration, when compared to the control cell line. Moreover, the bcl-2 cell line exhibited a greater than 40% increase in maximum antibody titre.
Journal of Bioscience and Bioengineering | 2011
Wan-Ping Voo; Pogaku Ravindra; Beng Ti Tey; Eng-Seng Chan
A comparative study on the stability and potential of alginate and pectin based beads for production of poultry probiotic cells using MRS medium in repeated batch fermentation was conducted. The bead cores, made of three types of materials, i.e., ca-alginate, ca-pectinate and ca-alginate/pectinate, were compared. The effect of single and double layer coatings using chitosan and core material, respectively, on the bead stability and cell production were also studied. The pectin based beads were found to be more stable than that of the alginate beads and their stability was further improved by coating with chitosan. The cell concentration in pectin based beads was comparable to that in the alginate beads. On the other hand, pectin based beads gave significantly lower cell concentration in the growth medium for the initial fermentation cycles when compared to the alginate beads. In conclusion, pectin was found to be potential encapsulation material for probiotic cell production owing to its stability and favourable microenvironment for cell growth.
Journal of Controlled Release | 2014
Hui-Peng Lim; Beng Ti Tey; Eng-Seng Chan
Natural biopolymers have attracted considerable interest for the development of delivery systems for protein drugs owing to their biocompatibility, non-toxicity, renewability and mild processing conditions. This paper offers an overview of the current status and future perspectives of particle designs using biopolymers for the stabilization and controlled-delivery of a model protein drug--insulin. We first describe the design criteria for polymeric encapsulation and subsequently classify the basic principles of particle fabrication as well as the existing particle designs for oral insulin encapsulation. The performances of these existing particle designs in terms of insulin stability and in vitro release behavior in acidic and alkaline media, as well as their in vivo performance are compared and reviewed. This review forms the basis for future works on the optimization of particle design and material formulation for the development of an improved oral delivery system for protein drugs.
Biotechnology and Bioprocess Engineering | 2004
Beng Ti Tey; Kok Hoe Yong; Hong Puay Ong; Tau Chuan Ling; Swee Tin Ong; Yan Peng Tan; Arbakariya Ariff; Wen Siang Tan
The effects of various environmental factors such as pH (5, 6, 7, 8 and 9), temperature (30, 37 and 40°C) and rotational speed (150, 200 and 250 rpm) on the growth and the hepatitis B core antigen (HBcAg) production ofEscherichia coli W3110IQ were examined in the present study. The highest growth rate is achieved at PH 7, 37°C and at a rotational speed of 250 rpm which is 0.927 h−1. The effect of pH on cell growth is more substantial compared to other parameters; it recorded a 123% different between the highest growth rate (0.927 h−1) at pH 7 and lowest growth at pH 5. The highest protein yield is achieved at pH 9, rotational speed of 250 rpm and 40°C. The yield of protein at pH 7 is 154% higher compared to the lowest yield achieved at pH 5. There is about 28% different of the protein yield for theE. coli cultivated at 250 rpm compared to that at 150 rpm which has the lowest HBcAg yield. The yield of protein at 40°C is 38% higher compared to the lowest yield achieved, at 30°C.
Bioresource Technology | 2010
Kit Ling Chin; P. S. H'ng; L.J. Wong; Beng Ti Tey; M. T. Paridah
Ethanolic fermentation using Saccharomyces cerevisiae was carried out on three types of hydrolysates produced from lignocelulosic biomass which are commonly found in Malaysia such as oil palm trunk, rubberwood and mixed hardwood. The effect of fermentation temperature and pH of hydrolysate was evaluated to optimize the fermentation efficiency which defined as maximum ethanol yield in minimum fermentation time. The fermentation process using different temperature of 25 degrees Celsius, 30 degrees Celsius and 40 degrees Celsius were performed on the prepared fermentation medium adjusted to pH 4, pH 6 and pH 7, respectively. Results showed that the fermentation time was significantly reduced with the increase of temperature but an adverse reduction in ethanol yield was observed using temperature of 40 degrees Celsius. As the pH of hydrolysate became more acidic, the ethanol yield increased. Optimum fermentation efficiency for ethanolic fermentation of lignocellulosic hydrolysates using S. cerevisiae can be obtained using 33.2 degrees Celsius and pH 5.3.
Journal of Chromatography A | 2010
Wei Boon Yap; Beng Ti Tey; Noorjahan Banu Mohammed Alitheen; Wen Siang Tan
Hepatitis B core antigen (HBcAg) is used as a diagnostic reagent for the detection of hepatitis B virus infection. In this study, immobilized metal affinity-expanded bed adsorption chromatography (IMA-EBAC) was employed to purify N-terminally His-tagged HBcAg from unclarified bacterial homogenate. Streamline Chelating was used as the adsorbent and the batch adsorption experiment showed that the optimal binding pH of His-tagged HBcAg was 8.0 with a binding capacity of 1.8 mg per ml of adsorbent. The optimal elution condition for the elution of His-tagged HBcAg from the adsorbent was at pH 7 in the presence of 500 mM imidazole and 1.5 M NaCl. The IMA-EBAC has successfully recovered 56% of His-tagged HBcAg from the unclarified E. coli homogenate with a purification factor of 3.64. Enzyme-linked immunosorbent assay (ELISA) showed that the antigenicity of the recovered His-tagged HBcAg was not affected throughout the IMA-EBAC purification process and electron microscopy revealed that the protein assembled into virus-like particles (VLP).
Apoptosis | 2004
Beng Ti Tey
A spin filter perfusion systems was used to achieve a high cell density culture for two NS0 cell lines in 2 litres bioreactors. One cell line is transfected with the bcl-2 gene (NS0 Bcl-2) encodes the ‘anti-apoptotic’ human Bcl-2 protein and the other cell line (NS0 Control) with a blank vector. The runs started as batch cultures for two days and were perfused with fresh medium at 0.5 volumes per day (day−1) for 4 days, increasing gradually to 2 day−1 at day 7. The increase of the viable cell density of Bcl-2 cell line was far greater than the control cell line, although they were perfused with the same amount of medium. At the end of the period of each perfusion rate, the viable cell densities of Bcl-2 culture were 30%, 120%, 160% and 220% higher than its control cell line corresponding values. Overall, there was a roughly 9 fold increase in viable cell density from the inoculum for the control culture, but almost a 30 fold increase for the Bcl-2 culture. The mode of cell death in the control culture was initially predominantly by necrosis (viability higher than 80%), but apoptotic cell death became more significant after day 8 of the culture. Cell death in the Bcl-2 culture was almost entirely by necrosis, although it remained at a very low level (less than 5%) to the termination time. The cell cycle distributions for both cell lines were very much similar indicating they have a similar doubling time and G1 to S progression rate. Interestingly, the Bcl-2 cultures exhibited reduced antibody specific production rate with increasing viable cell number and time. The volumetric production rate was, however, similar in both cultures. Bcl-2 as an anti-death protein allowed cells to survive and thus divide to higher cell densities without the need for additional nutrients. Most of the cellular energy in a producer cell line is used for biomass production rather than for antibody production, as was the case with the control cell line.
Journal of Virological Methods | 2013
Razieh Monjezi; Sheau Wei Tan; Beng Ti Tey; Chin Chin Sieo; Wen Siang Tan
The core antigen (HBcAg) of hepatitis B virus (HBV) is one of the markers for the identification of the viral infection. The main purpose of this study was to develop a TaqMan real-time detection assay based on the concept of phage display mediated immuno-PCR (PD-IPCR) for the detection of HBcAg. PD-IPCR combines the advantages of immuno-PCR (IPCR) and phage display technology. IPCR integrates the versatility of enzyme-linked immunosorbent assay (ELISA) with the sensitivity and signal generation power of PCR. Whereas, phage display technology exploits the physical association between the displayed peptide and the encoding DNA within the same phage particle. In this study, a constrained peptide displayed on the surface of an M13 recombinant bacteriophage that interacts tightly with HBcAg was applied as a diagnostic reagent in IPCR. The phage displayed peptide and its encoding DNA can be used to replace monoclonal antibody (mAb) and chemically bound DNA, respectively. This method is able to detect as low as 10ng of HBcAg with 10(8)pfu/ml of the recombinant phage which is about 10,000 times more sensitive than the phage-ELISA. The PD-IPCR provides an alternative means for the detection of HBcAg in human serum samples.
Journal of Chromatography B | 2010
Razieh Monjezi; Beng Ti Tey; Chin Chin Sieo; Wen Siang Tan
M13 is a non-lytic filamentous bacteriophage (phage). It has been used widely in phage display technology for displaying foreign peptides, and also for studying macromolecule structures and interactions. Traditionally, this phage has been purified by cesium chloride (CsCl) density gradient ultracentrifugation which is highly laborious and time consuming. In the present study, a simple, rapid and efficient method for the purification of M13 based on anion exchange chromatography was established. A pre-packed SepFast Super Q column connected to a fast protein liquid chromatography (FPLC) system was employed to capture released phages in clarified Escherichia coli fermented broth. An average yield of 74% was obtained from a packed bed mode elution using citrate buffer (pH 4), containing 1.5 M NaCl at 1 ml/min flow rate. The purification process was shortened substantially to less than 2 h from 18 h in the conventional ultracentrifugation method. SDS-PAGE revealed that the purity of particles was comparable to that of CsCl gradient density ultracentrifugation method. Plaque forming assay showed that the purified phages were still infectious.