Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bengt G. Martinsson is active.

Publication


Featured researches published by Bengt G. Martinsson.


Atmospheric Research | 1999

A closure study of sub-micrometer aerosol particle hygroscopic behaviour

Erik Swietlicki; Jingchuan Zhou; Olle H. Berg; Bengt G. Martinsson; Göran Frank; Sven Inge Cederfelt; U. Dusek; A. Berner; W. Birmili; Alfred Wiedensohler; B. Yuskiewicz; Keith N. Bower

Abstract The hygroscopic properties of sub-micrometer aerosol particles were studied in connection with a ground-based cloud experiment at Great Dun Fell, in northern England in 1995. Hygroscopic diameter growth factors were measured with a Tandem Differential Mobility Analyser (TDMA) for dry particle diameters between 35 and 265 nm at one of the sites upwind of the orographic cloud. An external mixture consisting of three groups of particles, each with different hygroscopic properties, was observed. These particle groups were denoted less-hygroscopic, more-hygroscopic and sea spray particles and had average diameter growth factors of 1.11–1.15, 1.38–1.69 and 2.08–2.21 respectively when taken from a dry state to a relative humidity of 90%. Average growth factors increased with dry particle size. A bimodal hygroscopic behaviour was observed for 74–87% of the cases depending on particle size. Parallel measurements of dry sub-micrometer particle number size distributions were performed with a Differential Mobility Particle Sizer (DMPS). The inorganic ion aerosol composition was determined by means of ion chromatography analysis of samples collected with Berner-type low pressure cascade impactors at ambient conditions. The number of ions collected on each impactor stage was predicted from the size distribution and hygroscopic growth data by means of a model of hygroscopic behaviour assuming that only the inorganic substances interacted with the ambient water vapour. The predicted ion number concentration was compared with the actual number of all positive and negative ions collected on the various impactor stages. For the impactor stage which collected particles with aerodynamic diameters between 0.17–0.53 μm at ambient relative humidity, and for which all pertinent data was available for the hygroscopic closure study, the predicted ion concentrations agreed with the measured values within the combined measurement and model uncertainties for all cases but one. For this impactor sampling occasion, the predicted ion concentration was significantly higher than the measured. The air mass in which this sample was taken had undergone extensive photochemical activity which had probably produced hygroscopically active material other than inorganic ions, such as organic oxygenated substances.


Tellus B | 2000

Hygroscopic properties of aerosol particles in the north-eastern Atlantic during ACE-2

Erik Swietlicki; Jingchuan Zhou; David S. Covert; Kaarle Hämeri; Bernhard Busch; M. Väkevä; Ulrike Dusek; Olle H. Berg; Alfred Wiedensohler; Pasi Aalto; J. M. Mäkelä; Bengt G. Martinsson; G. Papaspiropoulos; Besim Mentes; Göran Frank; Frank Stratmann

Measurements of the hygroscopic properties of sub-micrometer atmospheric aerosol particles were performed with hygroscopic tandem differential mobility analysers (H-TDMA) at 5 sites in the subtropical north-eastern Atlantic during the second Aerosol Characterization Experiment (ACE-2) from 16 June to 25 July 1997. Four of the sites were in the marine boundary layer and one was, at least occasionally, in the lower free troposphere. The hygroscopic diameter growth factors of individual aerosol particles in the dry particle diameter range 10−440 nm were generally measured for changes in relative humidity (RH) from <10% to 90%. In the marine boundary layer, growth factors at 90% RH were dependent on location, air mass type and particle size. The data was dominated by a unimodal growth distribution of more-hygroscopic particles, although a bimodal growth distribution including less-hygroscopic particles was observed at times, most often in the more polluted air masses. In clean marine air masses the more-hygroscopic growth factors ranged from about 1.6 to 1.8 with a consistent increase in growth factor with increasing particle size. There was also a tendency toward higher growth factors as sodium to sulphate molar ratio increased with increasing sea-salt contribution at higher wind speeds. During outbreaks of European pollution in the ACE-2 region, the growth factors of the largest particles were reduced, but only slightly. Growth factors at all sizes in both clean and polluted air masses were markedly lower at the Sagres, Portugal site due to more proximate continental influences. The frequency of occurrence of less-hygroscopic particles with a growth factor of ca. 1.15 was greatest during polluted conditions at Sagres. The free tropospheric 50 nm particles were predominately less-hygroscopic, with an intermediate growth factor of 1.4, but more-hygroscopic particles with growth factors of about 1.6 were also frequent. While these particles probably originate from within the marine boundary layer, the less-hygroscopic particles are probably more characteristic of lower free tropospheric air masses. For those occasions when measurements were made at 90% and an intermediate 60% or 70% RH, the growth factor G(RH) of the more-hygroscopic particles could be modelled empirically by a power law expression. For the ubiquitous more-hygroscopic particles, the expressions G(RH)=(1-RH/100)-0.210 for 50 nm Aitken mode particles and G(RH)=(1-RH/100)-0.233 for 166 nm accumulation mode particles are recommended for clean marine air masses in the north-eastern Atlantic within the range 0


Atmospheric Environment | 1997

Cloud droplet nucleation scavenging in relation to the size and hygroscopic behaviour of aerosol particles

Birgitta Svenningsson; Hans-Christen Hansson; Bengt G. Martinsson; Alfred Wiedensohler; Erik Swietlicki; Sven Inge Cederfelt; Manfred Wendisch; Keith N. Bower; T. W. Choularton; R.N. Colvile

The size distributions and hygroscopic growth spectra of aerosol particles were measured during the GCE cloud experiment at Great Dun Fell in the Pennine Hills in northern England. Hygroscopic growth is defined as the particle diameter at 90% RH divided by the particle diameter at 10% RH. The fraction of the aerosol particles scavenged by cloud droplets as a function of particle size was also measured. The general aerosol type was a mixture of marine and aged anthropogenic aerosols. The Aitken and accumulation mode numbers (average ± 1 S.D.) were 1543 ± 1078 and 1023 ± 682 cm−3 respectively. The mean diameters were in the range 30–100 nm and 100–330 nm. The hygroscopic growth spectra were bimodal about half the time. The less-hygroscopic particles had average growth factors of 1.06, 1.06, 1.03, 1.03, and 1.03 for particle diameters of 50, 75, 110, 165, and 265 nm, respectively. For the more-hygroscopic particles of the same sizes, the average hygroscopic growth was 1.34, 1.37, 1.43, 1.47, and 1.53. The effects of ageing on the aerosol particle size distribution and on hygroscopic behaviour are discussed. The scavenged fraction of aerosol particles was a strong function of particle diameter. The diameter with 50% scavenging was in the range 90–220 nm. No tail of smaller particles activated to cloud drops was observed. A small tail of larger particles that remained in the interstitial aerosol can be explained by there being a small fraction of less-hygroscopic particles. A weak correlation between the integral dry particle diameter and the diameter with 50% scavenging was seen.


Atmospheric Environment | 1997

The great dun fell cloud experiment 1993: An overview

T. W. Choularton; R.N. Colvile; Keith N. Bower; Martin Gallagher; M. Wells; K.M. Beswick; B. G. Arends; J. J. Möls; G. P. A. Kos; S. Fuzzi; J. A. Lind; G. Orsi; M. C. Facchini; P. Laj; R. Gieray; P. Wieser; T. Engelhardt; A. Berner; C. Kruisz; Detlev Möller; K. Acker; W. Wieprecht; Jens Lüttke; K. Levsen; M. Bizjak; Hans-Christen Hansson; Sven Inge Cederfelt; Göran Frank; Besim Mentes; Bengt G. Martinsson

The 1993 Ground-based Cloud Experiment on Great Dun Fell used a wide range of measurements of trace gases, aerosol particles and cloud droplets at five sites to study their sources and sinks especially those in cloud. These measurements have been interpreted using a variety of models. The conclusions add to our knowledge of air pollution, acidification of the atmosphere and the ground, eutrophication and climate change. The experiment is designed to use the hill cap cloud as a flow-through reactor, and was conducted in varying levels of pollution typical of much of the rural temperate continental northern hemisphere in spring-time.


Atmospheric Environment | 1997

Phase partitioning of aerosol constituents in cloud based on single-particle and bulk analysis

R. Gieray; P. Wieser; T. Engelhardt; Erik Swietlicki; Hans-Christen Hansson; Besim Mentes; D. Orsini; Bengt G. Martinsson; Birgitta Svenningsson; Kevin J. Noone; Jost Heintzenberg

Abstract Single-particle analysis, performed by laser microprobe mass spectrometry and bulk analytical techniques were used to study aerosol-cloud interactions within the third field campaign of the EURO-TRAC subproject “ground-based cloud experiments” at the Great Dun Fell, Cumbria, U.K. in spring 1993. The shape of the ridge made it possible for ground-based instrumentation to sample similar parcels of air before, during and after their transit through the cloud. A single jet five-stage minicascade impactor was used for sampling particles of the interstitial aerosol. A second impactor worked in tandem with a counterflow virtual impactor and collected residues of cloud droplets. Considering marine conditions largest droplets nucleated on sea-salt particles, whereas smaller droplets were formed on sulphate and methane sulphonate containing particles. This clearly indicates chemical inhomogeneities in the droplet phase. Particles, which were disfavoured by droplet formation, often contained the highest amounts of water-insoluble carbonaceous matter. For the submicron size range we found that the carbonaceous matter was always internally mixed with sulphate. The fraction of carbonaceous matter increased with decreasing size. A detectable fraction of particles remained in the cloud interstitial air, although they were in size as well as in composition suitable to form cloud droplets. The findings confirm that nucleation is the most important process affecting phase partitioning in cloud, but that spatial and temporal variations of water vapour supersaturation have also an influence on the observed phase partitioning. Proton induced X-ray emission analysis and light absorption measurements of filter samples showed that the average scavenged fraction was 0.77 for sulphur and 0.57 for soot in clouds formed by continental influenced air and 0.62 and 0.44. respectively, for marine influenced clouds.


Journal of Aerosol Science | 2003

Methods to measure and predict the transfer function size dependence of individual DMAs

Martin Karlsson; Bengt G. Martinsson

In this study of the transfer function of copies of the Vienna-type differential mobility analyser (DMA) it was found that three, supposedly identical, DMAs exhibited distinct differences with respect to the width of the transfer function. This means that the transfer function of a DMA needs to be determined on an individual basis in order to obtain accurate results from DMA measurements. The size dependence of the transfer function width and the penetration of three DMAs were investigated experimentally in a broad range of Peclet numbers (400-400000). Two of the three DMAs exhibited transfer function widths in excess of the broadening induced by diffusion. The size dependence of the width of all three DMAs could be explained within a few percents by assuming an instrument-specific, size-independent broadening in addition to diffusion broadening. The penetration was evaluated by relating to deposition in a circular tube. Excellent agreement between the experimental data and the simple model was obtained. The penetration study was extended to include literature data, showing that the simple model could be applied and that there are distinct differences between different DMA types. The results of this study indicate that the size dependence of the width of the transfer function and the penetration can be estimated by measuring the transfer function for a single particle size, thus greatly reducing the amount of work required by DMA users to characterise their instruments


Journal of Geophysical Research | 2015

Increase in upper tropospheric and lower stratospheric aerosol levels and its potential connection with Asian pollution

Jean-Paul Vernier; T. D. Fairlie; Murali Natarajan; F. G. Wienhold; Jianchun Bian; Bengt G. Martinsson; S. Crumeyrolle; Larry W. Thomason; Kristopher M. Bedka

Satellite observations have shown that the Asian Summer Monsoon strongly influences the upper troposphere and lower stratosphere (UTLS) aerosol morphology through its role in the formation of the Asian Tropopause Aerosol Layer (ATAL). Stratospheric Aerosol and Gas Experiment II solar occultation and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) lidar observations show that summertime UTLS Aerosol Optical Depth (AOD) between 13 and 18 km over Asia has increased by three times since the late 1990s. Here we present the first in situ balloon measurements of aerosol backscatter in the UTLS from Western China, which confirm high aerosol levels observed by CALIPSO since 2006. Aircraft in situ measurements suggest that aerosols at lower altitudes of the ATAL are largely composed of carbonaceous and sulfate materials (carbon/sulfur elemental ratio ranging from 2 to 10). Back trajectory analysis from Cloud-Aerosol Lidar with Orthogonal Polarization observations indicates that deep convection over the Indian subcontinent supplies the ATAL through the transport of pollution into the UTLS. Time series of deep convection occurrence, carbon monoxide, aerosol, temperature, and relative humidity suggest that secondary aerosol formation and growth in a cold, moist convective environment could play an important role in the formation of ATAL. Finally, radiative calculations show that the ATAL layer has exerted a short-term regional forcing at the top of the atmosphere of −0.1 W/m2 in the past 18 years. Key Points Increase of summertime upper tropospheric aerosol levels over Asia since the 1990s Upper tropospheric enhancement also observed by in situ backscatter measurements Significant regional radiative forcing of −0.1 W/m2


Atmospheric Research | 1999

Droplet nucleation and growth in orographic clouds in relation to the aerosol population

Bengt G. Martinsson; Göran Frank; Sven Inge Cederfelt; Erik Swietlicki; Olle H. Berg; Jingchuan Zhou; Keith N. Bower; Carl Bradbury; W. Birmili; Frank Stratmann; Manfred Wendisch; Alfred Wiedensohler; B. Yuskiewicz

Abstract The formation and development of orographic clouds was studied in a field experiment comprising several measurement sites at a mountain ridge. The influence of the aerosol population present on the cloud microstructure was studied in relation to the dynamics in the cloud formation. Droplet nucleation scavenging was investigated by the introduction of a non-dimensional particle diameter related to the process, and it was found that the scavenging rose rapidly in a relatively narrow particle size interval. The size dependency of the scavenging could partly be explained by external mixture of the aerosol. The large particles in the cloud interstitial aerosol was found to be of a chemical nature which allows for only a very weak uptake of water, implying that the chemical composition of these particles rather than entrainment of dry air prevented the droplet nucleation. The aerosol particle number concentration was found to strongly influence the cloud microstructure. Droplet number concentrations up to approximately 2000 cm −3 were observed together with a substantially reduced effective droplet diameter. The observed effect of elevated particle number concentrations in orographic clouds was generalised to the climatologically more important stratiform clouds by the use of a cloud model. It was found that the microstructure of stratiform clouds was strongly dependent on the aerosol population present as well on the dynamics in the cloud formation.


Geophysical Research Letters | 2009

Influence of the 2008 Kasatochi volcanic eruption on sulfurous and carbonaceous aerosol constituents in the lower stratosphere

Bengt G. Martinsson; Carl A. M. Brenninkmeijer; Simon A. Carn; M. Hermann; Klaus-Peter Heue; P. F. J. van Velthoven; A. Zahn

Influences on stratospheric aerosol during the first four months following the eruption of Kasatochi volcano (Alaska) were studied using observations at 10700 +/- 600 m altitude from the CARIBIC platform. Collected aerosol samples were analyzed for elemental constituents. Particle number concentrations were recorded in three size intervals together with ozone mixing ratios and slant column densities of SO2. The eruption increased particulate sulfur concentrations by a factor of up to 10 compared to periods before the eruption (1999-2002 and 2005-August 2008). Three to four months later, the concentration was still elevated by a factor of 3 in the lowermost stratosphere at northern midlatitudes. Besides sulfur, the Kasatochi aerosol contained a significant carbonaceous component and ash that declined in time after the eruption. The carbon-to-sulfur mass concentration ratio of the volcanic aerosol was 2.6 seven days after the eruption and reached 1.2 after 3 - 4 months. Citation: Martinsson, B. G., C. A. M. Brenninkmeijer, S. A. Carn, M. Hermann, K.-P. Heue, P. F. J. van Velthoven, and A. Zahn (2009), Influence of the 2008 Kasatochi volcanic eruption on sulfurous and carbonaceous aerosol constituents in the lower stratosphere, Geophys. Res. Lett., 36, L12813, doi: 10.1029/2009GL038735. (Less)


Nature Communications | 2015

Significant radiative impact of volcanic aerosol in the lowermost stratosphere.

Sandra M. Andersson; Bengt G. Martinsson; Jean-Paul Vernier; Johan Friberg; Carl A. M. Brenninkmeijer; Markus Hermann; Peter F. J. van Velthoven; A. Zahn

Despite their potential to slow global warming, until recently, the radiative forcing associated with volcanic aerosols in the lowermost stratosphere (LMS) had not been considered. Here we study volcanic aerosol changes in the stratosphere using lidar measurements from the NASA CALIPSO satellite and aircraft measurements from the IAGOS-CARIBIC observatory. Between 2008 and 2012 volcanism frequently affected the Northern Hemisphere stratosphere aerosol loadings, whereas the Southern Hemisphere generally had loadings close to background conditions. We show that half of the global stratospheric aerosol optical depth following the Kasatochi, Sarychev and Nabro eruptions is attributable to LMS aerosol. On average, 30% of the global stratospheric aerosol optical depth originated in the LMS during the period 2008–2011. On the basis of the two independent, high-resolution measurement methods, we show that the LMS makes an important contribution to the overall volcanic forcing.

Collaboration


Dive into the Bengt G. Martinsson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Zahn

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge