Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bengt Meuller is active.

Publication


Featured researches published by Bengt Meuller.


Aerosol Science and Technology | 2012

Review of Spark Discharge Generators for Production of Nanoparticle Aerosols

Bengt Meuller; Maria Messing; David L. J. Engberg; Anna M. Jansson; Linda I. M. Johansson; Susanne M. Norlén; Nina Tureson; Knut Deppert

In the growing field of nanotechnology there is an increasing need to develop production methods for nanoparticles, especially methods that provide control and reproducibility. The spark discharge generator (SDG) is a versatile device for the production of nanoparticle aerosols. It can produce aerosol nanoparticles in the entire nanometer range (1–100 nm), and beyond. Depending on requirements, and the system used, these nanoparticles can be completely contamination free and composed of one or more materials. This provides a unique opportunity to create new materials on the nanoscale. Already in use in semiconductor, materials, health and environmental research, the SDG shows promise for yet more applications. If needed, particle production by the SDG could be scaled up using parallel generators facilitating continuous high-volume production of aerosol nanoparticles. Still, there is a surprisingly low knowledge of fundamental processes in the SDG. In this article we present a thorough review of the most common and relevant SDGs and the theory of their operation. Some possible improvements are also discussed. Copyright 2012 American Association for Aerosol Research


Nanotoxicology | 2012

Gas-borne particles with tunable and highly controlled characteristics for nanotoxicology studies.

Maria Messing; Christian Svensson; Joakim Pagels; Bengt Meuller; Knut Deppert; Jenny Rissler

Abstract For nanotoxicology investigations of air-borne particles to provide relevant results it is ever so important that the particle exposure of, for example cells, closely resembles the “real” exposure situation, that the dosimetry is well defined, and that the characteristics of the deposited nanoparticles are known in detail. By synthesizing the particles in the gas-phase and directly depositing them on lung cells the particle deposition conditions in the lung is closely mimicked. In this work we present a setup for generation of gas-borne nanoparticles of a variety of different materials with highly controlled and tunable particle characteristics, and demonstrate the method by generation of gold particles. Particle size, number concentration and mass of individual particles of the population are measured on-line by means of differential mobility analyzers (DMA) and an aerosol particle mass analyzer (APM), whereas primary particle size and internal structure are investigated by transmission electron microscopy. A method for estimating the surface area dose from the DMA-APM measurements is applied and we further demonstrate that for the setup used, a deposition time of around 1 h is needed for deposition onto cells in an air–liquid interface chamber, using electrostatic deposition, to reach a toxicological relevant surface area dose.


Nano Research | 2015

In-situ characterization of metal nanoparticles and their organic coatings using laser-vaporization aerosol mass spectrometry

Patrik Nilsson; Axel Eriksson; Linus Ludvigsson; Maria Messing; Erik Nordin; Anders Gudmundsson; Bengt Meuller; Knut Deppert; Edward Charles Fortner; Timothy B. Onasch; Joakim Pagels

The development of methods to produce nanoparticles with unique properties via the aerosol route is progressing rapidly. Typical characterization techniques extract particles from the synthesis process for subsequent offline analysis, which may alter the particle characteristics. In this work, we use laser-vaporization aerosol mass spectrometry (LV-AMS) with 70-eV electron ionization for real-time, in-situ nanoparticle characterization. The particle characteristics are examined for various aerosol synthesis methods, degrees of sintering, and for controlled condensation of organic material to simulate surface coating/functionalization. The LV-AMS is used to characterize several types of metal nanoparticles (Ag, Au, Pd, PdAg, Fe, Ni, and Cu). The degree of oxidation of the Fe and Ni nanoparticles is found to increase with increased sintering temperature, while the surface organic-impurity content of the metal particles decreases with increased sintering temperature. For aggregate metal particles, the organic-impurity content is found to be similar to that of a monolayer. By comparing different equivalent-diameter measurements, we demonstrate that the LV-AMS can be used in tandem with a differential mobility analyzer to determine the compactness of synthesized metal particles, both during sintering and during material addition for surface functionalization. Further, materials supplied to the particle production line downstream of the particle generators are found to reach the generators as contaminants. The capacity for such in-situ observations is important, as it facilitates rapid response to undesired behavior within the particle production process. This study demonstrates the utility of real-time, in-situ aerosol mass spectrometric measurements to characterize metal nanoparticles obtained directly from the synthesis process line, including their chemical composition, shape, and contamination, providing the potential for effective optimization of process operating parameters.


Journal of Physics D | 2015

Investigations of initial particle stages during spark discharge

Linus Ludvigsson; Bengt Meuller; Maria Messing

The number of nanoparticle-based products on the market is expected to increase considerably during the coming decades. This forces the industry to have highly meticulous manufacturing of large amounts of nanoparticles using cheap and environmentally friendly methods. For the production of metal nanoparticles spark discharge generation is a promising route to fulfill these demands. The spark discharge generator can be easily scaled-up for mass production due to its simple design solely by placing several units in parallel. Before doing so, one first needs to optimize a single spark discharge generator unit. To optimize the spark discharge generator in a controlled way the first stage of nanoparticle formation needs to be understood. To improve this understanding we have constructed a customized nanoparticle sampler to enable sampling of the initial stages of particle formation for imaging in a TEM. In this article we present the design of the sampler and discuss optimal sampling parameters. We also present how the generation parameters can be tuned in order to affect the first stages of particle formation and hence the final nanoparticles.


Nanotechnology | 2017

From plasma to nanoparticles : Optical and particle emission of a spark discharge generator

A Kohut; Linus Ludvigsson; Bengt Meuller; Knut Deppert; Maria Messing; Gábor Galbács; Zs. Geretovszky

The increased demand for high purity nanoparticles (NPs) of defined geometry necessitates the continuous development of generation routes. One of the most promising physical techniques for producing metal, semiconductor or alloy NPs in the gas phase is spark discharge NP generation. The technique has a great potential for up-scaling without altering the particles. Despite the simplicity of the setup, the formation of NPs in a spark discharge takes place via complex multi-scale processes, which greatly hinders the investigation via conventional NP measurement techniques. In the present work, time-resolved optical emission spectroscopy (OES) was used to provide information on the species present in the spark from as early as approximately 100 ns after the initiation of the discharge. We demonstrate that operando emission spectroscopy can deliver valuable insights into NP formation. The emission spectra of the spark are used to identify, among others, the main stages of material erosion and to calculate the quenching rate of the generated metal vapour. We demonstrate that the alteration of key control parameters, that are typically used to optimize NP generation, clearly affect the emission spectra. We report for Cu and Au NPs that the intensity of spectral lines emitted by metal atoms levels off when spark energy is increased above an energy threshold, suggesting that the maximum concentration of metal vapour produced in the generator is limited. This explains the size variation of the generated NPs. We report a strong correlation between the optical and particle emission of the spark discharge generator, which demonstrate the suitability of OES as a valuable characterization tool that will allow for the more deliberate optimization of spark-based NP generation.


Nano Research | 2018

In situ observation of synthesized nanoparticles in ultra-dilute aerosols via X-ray scattering

Sarah R. McKibbin; Sofie Yngman; Olivier Balmes; Bengt Meuller; Simon Tågerud; Maria Messing; Giuseppe Portale; Michael Sztucki; Knut Deppert; Lars Samuelson; Martin Magnusson; Edvin Lundgren; Anders Mikkelsen

In-air epitaxy of nanostructures (Aerotaxy) has recently emerged as a viable route for fast, large-scale production. In this study, we use small-angle X-ray scattering to perform direct in-flight characterizations of the first step of this process, i.e., the engineered formation of Au and Pt aerosol nanoparticles by spark generation in a flow of N2 gas. This represents a particular challenge for characterization because the particle density can be extremely low in controlled production. The particles produced are examined during production at operational pressures close to atmospheric conditions and exhibit a lognormal size distribution ranging from 5–100 nm. The Au and Pt particle production and detection are compared. We observe and characterize the nanoparticles at different stages of synthesis and extract the corresponding dominant physical properties, including the average particle diameter and sphericity, as influenced by particle sintering and the presence of aggregates. We observe highly sorted and sintered spherical Au nanoparticles at ultra-dilute concentrations (< 5 × 105 particles/cm3) corresponding to a volume fraction below 3 × 10–10, which is orders of magnitude below that of previously measured aerosols. We independently confirm an average particle radius of 25 nm via Guinier and Kratky plot analysis. Our study indicates that with high-intensity synchrotron beams and careful consideration of background removal, size and shape information can be obtained for extremely low particle concentrations with industrially relevant narrow size distributions.


Aerosol Science and Technology | 2018

Hydrogen-assisted spark discharge generated metal nanoparticles to prevent oxide formation

R. T. Hallberg; L. Ludvigsson; C. Preger; Bengt Meuller; Kimberly A. Dick; Maria Messing

ABSTRACT There exists a demand for production of metal nanoparticles for todays emerging nanotechnology. Aerosol-generated metal nanoparticles can oxidize during particle formation due to impurities in the carrier gas. One method to produce unoxidized metal nanoparticles is to first generate metal oxides and then reduce them during sintering. Here, we propose to instead prevent oxidation by introducing the reducing agent already at particle formation. We show that by mixing 5% hydrogen into the nitrogen carrier gas, we can generate single crystalline metal nanoparticles by spark discharge from gold, cobalt, bismuth, and tin electrodes. The non-noble nanoparticles exhibit signs of surface oxidation likely formed post-deposition when exposed to air. Nanoparticles generated without hydrogen are found to be primarily polycrystalline and oxidized. To demonstrate the advantages of supplying the reducing agent at generation, we compare to nanoparticles that are generated in nitrogen and sintered in a hydrogen mixture. For bismuth and tin, the crystal quality of the particles after sintering is considerably higher when hydrogen is introduced at particle generation compared to at sintering, whereas for cobalt it is equally effective to only add hydrogen at sintering. We propose that hydrogen present at particle generation prevents the formation of oxide primary particles, thus improving the ability to sinter the nanoparticles to compact and single crystals of metal. This method is general and can be applied to other aerosol generation systems, to improve the generation of size-controlled nanoparticles of non-noble metals with a suitable reducing agent. Copyright


Journal of Physical Chemistry C | 2010

Generation of Pd Model Catalyst Nanoparticles by Spark Discharge

Maria Messing; Rasmus Westerström; Bengt Meuller; Sara Blomberg; Johan Gustafson; Jesper N Andersen; Edvin Lundgren; Richard van Rijn; O. Balmes; Hendrik Bluhm; Knut Deppert


Journal of Aerosol Science | 2015

Characteristics of airborne gold aggregates generated by spark discharge and high temperature evaporation furnace: Mass-mobility relationship and surface area

Christian Svensson; Linus Ludvigsson; Bengt Meuller; Max L. Eggersdorfer; Knut Deppert; Mats Bohgard; Joakim Pagels; Maria Messing; Jenny Rissler


International Aerosol Conference, 2014 | 2014

Nanotoxicology: Aerosol surface area determination

Maria Messing; Christian Svensson; Linus Ludvigsson; Bengt Meuller; Knut Deppert; Jenny Rissler

Collaboration


Dive into the Bengt Meuller's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge