Beni Yoshida
Perimeter Institute for Theoretical Physics
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Beni Yoshida.
Journal of High Energy Physics | 2015
Fernando Pastawski; Beni Yoshida; Daniel Harlow; John Preskill
A bstractWe propose a family of exactly solvable toy models for the AdS/CFT correspondence based on a novel construction of quantum error-correcting codes with a tensor network structure. Our building block is a special type of tensor with maximal entanglement along any bipartition, which gives rise to an isometry from the bulk Hilbert space to the boundary Hilbert space. The entire tensor network is an encoder for a quantum error-correcting code, where the bulk and boundary degrees of freedom may be identified as logical and physical degrees of freedom respectively. These models capture key features of entanglement in the AdS/CFT correspondence; in particular, the Ryu-Takayanagi formula and the negativity of tripartite information are obeyed exactly in many cases. That bulk logical operators can be represented on multiple boundary regions mimics the Rindlerwedge reconstruction of boundary operators from bulk operators, realizing explicitly the quantum error-correcting features of AdS/CFT recently proposed in [1].
Journal of High Energy Physics | 2016
Pavan Hosur; Xiao-Liang Qi; Daniel A. Roberts; Beni Yoshida
A bstractWe study chaos and scrambling in unitary channels by considering their entanglement properties as states. Using out-of-time-order correlation functions to diagnose chaos, we characterize the ability of a channel to process quantum information. We show that the generic decay of such correlators implies that any input subsystem must have near vanishing mutual information with almost all partitions of the output. Additionally, we propose the negativity of the tripartite information of the channel as a general diagnostic of scrambling. This measures the delocalization of information and is closely related to the decay of out-of-time-order correlators. We back up our results with numerics in two non-integrable models and analytic results in a perfect tensor network model of chaotic time evolution. These results show that the butterfly effect in quantum systems implies the information-theoretic definition of scrambling.
Journal of High Energy Physics | 2017
Daniel A. Roberts; Beni Yoshida
A bstractWe study the relationship between quantum chaos and pseudorandomness by developing probes of unitary design. A natural probe of randomness is the “frame poten-tial,” which is minimized by unitary k-designs and measures the 2-norm distance between the Haar random unitary ensemble and another ensemble. A natural probe of quantum chaos is out-of-time-order (OTO) four-point correlation functions. We show that the norm squared of a generalization of out-of-time-order 2k-point correlators is proportional to the kth frame potential, providing a quantitative connection between chaos and pseudorandomness. Additionally, we prove that these 2k-point correlators for Pauli operators completely determine the k-fold channel of an ensemble of unitary operators. Finally, we use a counting argument to obtain a lower bound on the quantum circuit complexity in terms of the frame potential. This provides a direct link between chaos, complexity, and randomness.
Physical Review B | 2013
Beni Yoshida
We present a large class of three-dimensional spin models that possess topological order with stability against local perturbations, but are beyond description of topological quantum field theory. Conventional topological spin liquids, on a formal level, may be viewed as condensation of stringlike extended objects with discrete gauge symmetries, being at fixed points with continuous scale symmetries. In contrast, ground states of fractal spin liquids are condensation of highly fluctuating fractal objects with certain algebraic symmetries, corresponding to limit cycles under real-space renormalization group transformations which naturally arise from discrete scale symmetries of underlying fractal geometries. A particular class of three-dimensional models proposed in this paper may potentially saturate quantum information storage capacity for local spin systems.
Journal of High Energy Physics | 2017
Jordan S. Cotler; Nicholas Hunter-Jones; J. B. Liu; Beni Yoshida
A bstractChaos and complexity entail an entropic and computational obstruction to describing a system, and thus are intrinsically difficult to characterize. In this paper, we consider time evolution by Gaussian Unitary Ensemble (GUE) Hamiltonians and analytically compute out-of-time-ordered correlation functions (OTOCs) and frame potentials to quantify scrambling, Haar-randomness, and circuit complexity. While our random matrix analysis gives a qualitatively correct prediction of the late-time behavior of chaotic systems, we find unphysical behavior at early times including an O1
New Journal of Physics | 2015
Aleksander Kubica; Beni Yoshida; Fernando Pastawski
Physical Review A | 2015
Fernando Pastawski; Beni Yoshida
\mathcal{O}(1)
Physical Review B | 2015
Beni Yoshida
Annals of Physics | 2017
Beni Yoshida
scrambling time and the apparent breakdown of spatial and temporal locality. The salient feature of GUE Hamiltonians which gives us computational traction is the Haar-invariance of the ensemble, meaning that the ensemble-averaged dynamics look the same in any basis. Motivated by this property of the GUE, we introduce k-invariance as a precise definition of what it means for the dynamics of a quantum system to be described by random matrix theory. We envision that the dynamical onset of approximate k-invariance will be a useful tool for capturing the transition from early-time chaos, as seen by OTOCs, to late-time chaos, as seen by random matrix theory.
Physical Review B | 2016
Beni Yoshida
The topological color code and the toric code are two leading candidates for realizing fault-tolerant quantum computation. Here we show that the color code on a d-dimensional closed manifold is equivalent to multiple decoupled copies of the d-dimensional toric code up to local unitary transformations and adding or removing ancilla qubits. Our result not only generalizes the proven equivalence for d = 2, but also provides an explicit recipe of how to decouple independent components of the color code, highlighting the importance of colorability in the construction of the code. Moreover, for the d-dimensional color code with d + 1 boundaries of d + 1 distinct colors, we find that the code is equivalent to multiple copies of the d-dimensional toric code which are attached along a (d - 1)-dimensional boundary. In particular, for d = 2, we show that the (triangular) color code with boundaries is equivalent to the (folded) toric code with boundaries. We also find that the d-dimensional toric code admits logical non-Pauli gates from the dth level of the Clifford hierarchy, and thus saturates the bound by Bravyi and Konig. In particular, we show that the logical d-qubit control-Z gate can be fault-tolerantly implemented on the stack of d copies of the toric code by a local unitary transformation.