Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benigno Barbés is active.

Publication


Featured researches published by Benigno Barbés.


Cancer Research | 2016

Abscopal Effects of Radiotherapy Are Enhanced by Combined Immunostimulatory mAbs and Are Dependent on CD8 T Cells and Crosspriming

Maria E. Rodriguez-Ruiz; Inmaculada Rodriguez; Saray Garasa; Benigno Barbés; Jose Luis Solorzano; Jose Luis Perez-Gracia; Sara Labiano; Miguel F. Sanmamed; Arantza Azpilikueta; Elixabet Bolaños; Alfonso R. Sánchez-Paulete; M. Angela Aznar; Ana Rouzaut; Kurt A. Schalper; Maria Jure-Kunkel; Ignacio Melero

Preclinical and clinical evidence indicate that the proimmune effects of radiotherapy can be synergistically augmented with immunostimulatory mAbs to act both on irradiated tumor lesions and on distant, nonirradiated tumor sites. The combination of radiotherapy with immunostimulatory anti-PD1 and anti-CD137 mAbs was conducive to favorable effects on distant nonirradiated tumor lesions as observed in transplanted MC38 (colorectal cancer), B16OVA (melanoma), and 4T1 (breast cancer) models. The therapeutic activity was crucially performed by CD8 T cells, as found in selective depletion experiments. Moreover, the integrities of BATF-3-dependent dendritic cells specialized in crosspresentation/crosspriming of antigens to CD8+ T cells and of the type I IFN system were absolute requirements for the antitumor effects to occur. The irradiation regimen induced immune infiltrate changes in the irradiated and nonirradiated lesions featured by reductions in the total content of effector T cells, Tregs, and myeloid-derived suppressor cells, while effector T cells expressed more intracellular IFNγ in both the irradiated and contralateral tumors. Importantly, 48 hours after irradiation, CD8+ TILs showed brighter expression of CD137 and PD1, thereby displaying more target molecules for the corresponding mAbs. Likewise, PD1 and CD137 were induced on tumor-infiltrating lymphocytes from surgically excised human carcinomas that were irradiated ex vivo These mechanisms involving crosspriming and CD8 T cells advocate clinical development of immunotherapy combinations with anti-PD1 plus anti-CD137 mAbs that can be synergistically accompanied by radiotherapy strategies, even if the disease is left outside the field of irradiation. Cancer Res; 76(20); 5994-6005. ©2016 AACR.


International Journal of Radiation Oncology Biology Physics | 2017

Intercellular Adhesion Molecule-1 and Vascular Cell Adhesion Molecule Are Induced by Ionizing Radiation on Lymphatic Endothelium

Maria E. Rodriguez-Ruiz; Saray Garasa; Inmaculada Rodriguez; Jose Luis Solorzano; Benigno Barbés; Alba Yanguas; Alvaro Teijeira; Iñaki Etxeberria; J. Aristu; Cornelia Halin; Ignacio Melero; Ana Rouzaut

PURPOSE/OBJECTIVES The goal of this study was to assess the effects of ionizing radiation on the expression of the integrin ligands ICAM-1 and VCAM that control leucocyte transit by lymphatic endothelial cells. MATERIALS/METHODS Confluent monolayers of primary human lymphatic endothelial cells (LEC) were irradiated with single dose of 2, 5, 10 or 20 Gy, with 6 MeV-x-rays using a Linear-Accelerator. ICAM-1 and VCAM expression was determined by flow cytometry. Human tissue specimens received a single dose of 20 Gy with 15 MeV-x-rays. MC38, B16-OVA or B16-VEGF-C tumors grown in C57BL/6 mice were irradiated with single dose of 20Gy using a Linear-Accelerator fitted with a 10mm Radiosurgery collimator. Clinical samples were obtained from patients previous and 4 weeks after complete standard radiotherapy. ICAM-1 and VCAM expression was detected in all tissue specimens by confocal microscopy. To understand the role of TGFβ in this process anti-TGFβ blocking mAb were injected i.p. 30min before radiotherapy. Cell adhesion to irradiated LEC was analyzed in adhesion experiments performed in the presence or in the absence of anti- TGFβ and /or anti-ICAM1 blocking mAb. RESULTS We demonstrate that lymphatic endothelial cells in tumor samples experience induction of surface ICAM-1 and VCAM when exposed to ionizing radiation in a dose- and time-dependent manner. These effects can be recapitulated in cultured LEC, and are in part mediated by TGFβ. These data are consistent with increases in ICAM-1 and VCAM expression on LYVE-1+ endothelial cells in freshly explanted human tumor tissue and in mouse transplanted tumors after radiotherapy. Finally, ICAM-1 and VCAM expression accounts for enhanced adherence of human T lymphocytes to irradiated LEC. CONCLUSION Our results show induction of ICAM-1 and VCAM on LVs in irradiated lesions and offer a starting point for elucidating the biological and therapeutic implications of targeting leukocyte traffic in combination to immunotherapy.


Physics in Medicine and Biology | 2016

Experimental pencil beam kernels derivation for 3D dose calculation in flattening filter free modulated fields.

Juan Diego Azcona; Benigno Barbés; Lilie Wang; Javier Burguete

This paper presents a method to obtain the pencil-beam kernels that characterize a megavoltage photon beam generated in a flattening filter free (FFF) linear accelerator (linac) by deconvolution from experimental measurements at different depths. The formalism is applied to perform independent dose calculations in modulated fields. In our previous work a formalism was developed for ideal flat fluences exiting the linacs head. That framework could not deal with spatially varying energy fluences, so any deviation from the ideal flat fluence was treated as a perturbation. The present work addresses the necessity of implementing an exact analysis where any spatially varying fluence can be used such as those encountered in FFF beams. A major improvement introduced here is to handle the actual fluence in the deconvolution procedure. We studied the uncertainties associated to the kernel derivation with this method. Several Kodak EDR2 radiographic films were irradiated with a 10 MV FFF photon beam from two linacs from different vendors, at the depths of 5, 10, 15, and 20cm in polystyrene (RW3 water-equivalent phantom, PTW Freiburg, Germany). The irradiation field was a 50mm diameter circular field, collimated with a lead block. The 3D kernel for a FFF beam was obtained by deconvolution using the Hankel transform. A correction on the low dose part of the kernel was performed to reproduce accurately the experimental output factors. Error uncertainty in the kernel derivation procedure was estimated to be within 0.2%. Eighteen modulated fields used clinically in different treatment localizations were irradiated at four measurement depths (total of fifty-four film measurements). Comparison through the gamma-index to their corresponding calculated absolute dose distributions showed a number of passing points (3%, 3mm) mostly above 99%. This new procedure is more reliable and robust than the previous one. Its ability to perform accurate independent dose calculations was demonstrated.


Journal of Applied Clinical Medical Physics | 2015

Development and clinical evaluation of a simple optical method to detect and measure patient external motion

Benigno Barbés; Juan Diego Azcona; Elena Prieto; José Manuel de Foronda; Marina Martínez García; Javier Burguete

A simple and independent system to detect and measure the position of a number of points in space was devised and implemented. Its application aimed to detect patient motion during radiotherapy treatments, alert of out‐of‐tolerances motion, and record the trajectories for subsequent studies. The system obtains the 3D position of points in space, through its projections in 2D images recorded by two cameras. It tracks black dots on a white sticker placed on the surface of the moving object. The system was tested with linear displacements of a phantom, circular trajectories of a rotating disk, oscillations of an in‐house phantom, and oscillations of a 4D phantom. It was also used to track 461 trajectories of points on the surface of patients during their radiotherapy treatments. Trajectories of several points were reproduced with accuracy better than 0.3 mm in the three spatial directions. The system was able to follow periodic motion with amplitudes lower than 0.5 mm, to follow trajectories of rotating points at speeds up to 11.5 cm/s, and to track accurately the motion of a respiratory phantom. The technique has been used to track the motion of patients during radiotherapy and to analyze that motion. The method is flexible. Its installation and calibration are simple and quick. It is easy to use and can be implemented at a very affordable price. Data collection does not involve any discomfort to the patient and does not delay the treatment, so the system can be used routinely in all treatments. It has an accuracy similar to that of other, more sophisticated, commercially available systems. It is suitable to implement a gating system or any other application requiring motion detection, such as 4D CT, MRI or PET. PACS numbers: 87.55.N, 87.56.DaA simple and independent system to detect and measure the position of a number of points in space was devised and implemented. Its application aimed to detect patient motion during radiotherapy treatments, alert of out-of-tolerances motion, and record the trajectories for subsequent studies. The system obtains the 3D position of points in space, through its projections in 2D images recorded by two cameras. It tracks black dots on a white sticker placed on the surface of the moving object. The system was tested with linear displacements of a phantom, circular trajectories of a rotating disk, oscillations of an in-house phantom, and oscillations of a 4D phantom. It was also used to track 461 trajectories of points on the surface of patients during their radiotherapy treatments. Trajectories of several points were reproduced with accuracy better than 0.3 mm in the three spatial directions. The system was able to follow periodic motion with amplitudes lower than 0.5 mm, to follow trajectories of rotating points at speeds up to 11.5 cm/s, and to track accurately the motion of a respiratory phantom. The technique has been used to track the motion of patients during radiotherapy and to analyze that motion. The method is flexible. Its installation and calibration are simple and quick. It is easy to use and can be implemented at a very affordable price. Data collection does not involve any discomfort to the patient and does not delay the treatment, so the system can be used routinely in all treatments. It has an accuracy similar to that of other, more sophisticated, commercially available systems. It is suitable to implement a gating system or any other application requiring motion detection, such as 4D CT, MRI or PET. PACS numbers: 87.55.N, 87.56.Da.


Medical Dosimetry | 2017

Commissioning of small field size radiosurgery cones in a 6-MV flattening filter-free beam

Juan Diego Azcona; Benigno Barbés; Verónica Morán; Javier Burguete

This study aimed to describe the commissioning of small field size radiosurgery cones in a 6-MV flattening filter free (FFF) beam and report our measured values. Four radiosurgery cones of diameters 5, 10, 12.5, and 15 mm supplied by Elekta Medical were commissioned in a 6-MV FFF beam from an Elekta Versa linear accelerator. The extraction of a reference signal for measuring small fields in scanning mode is challenging. A transmission chamber was attached to the lower part of the collimators and used for percentage depth dose (PDD) and profile measurements in scanning mode with a stereotactic diode. Tissue-maximum ratios (TMR) and output factors (OF) for all collimators were measured with a stereotactic diode (IBA). TMR and the OF for the largest collimator were also acquired on a polystyrene phantom with a microionization chamber of 0.016 cm3 volume (PTW Freiburg PinPoint 3D). Measured TMR with diode and PinPoint microionization chamber agreed very well with differences smaller than 1% for depths below 20 cm, except for the smaller collimator, for which differences were always smaller than 2%. Calculated TMR were significantly different (up to 7%) from measured TMR. OF measured with diode and chamber showed a difference of 3.5%. The use of a transmission chamber allowed the measurement of the small-field dosimetric properties with a simple setup. The commissioning of radiosurgery cones in FFF beams has been performed with essentially the same procedures and recommended detectors used with flattened beams. Good agreement was found between TMR measurements acquired with the IBA stereotactic diode and the PinPoint 3D microionization chamber. The transmission chamber overcomes the problem of extracting a reference signal and is of great help for small-field commissioning.


Acta Radiologica | 2018

Impact on dose and image quality of a software-based scatter correction in mammography:

Teresa Monserrat; Elena Prieto; Benigno Barbés; Luis Pina; Arlette Elizalde; Belén Fernández

Background In 2014, Siemens developed a new software-based scatter correction (Progressive Reconstruction Intelligently Minimizing Exposure [PRIME]), enabling grid-less digital mammography. Purpose To compare doses and image quality between PRIME (grid-less) and standard (with anti-scatter grid) modes. Material and Methods Contrast-to-noise ratio (CNR) was measured for various polymethylmethacrylate (PMMA) thicknesses and dose values provided by the mammograph were recorded. CDMAM phantom images were acquired for various PMMA thicknesses and inverse Image Quality Figure (IQFinv) was calculated. Values of incident entrance surface air kerma (ESAK) and average glandular dose (AGD) were obtained from the DICOM header for a total of 1088 pairs of clinical cases. Two experienced radiologists compared subjectively the image quality of a total of 149 pairs of clinical cases. Results CNR values were higher and doses were lower in PRIME mode for all thicknesses. IQFinv values in PRIME mode were lower for all thicknesses except for 40 mm of PMMA equivalent, in which IQFinv was slightly greater in PRIME mode. A mean reduction of 10% in ESAK and 12% in AGD in PRIME mode with respect to standard mode was obtained. The clinical image quality in PRIME and standard acquisitions resulted to be similar in most of the cases (84% for the first radiologist and 67% for the second one). Conclusion The use of PRIME software reduces, in average, the dose of radiation to the breast without affecting image quality. This reduction is greater for thinner and denser breasts.


Revista Espanola De Medicina Nuclear | 2016

Dosis de radiación producida por los pacientes durante la incorporación del radiofármaco en las pruebas diagnósticas de medicina nuclear

Verónica Morán; Elena Prieto; Berta García-García; Benigno Barbés; Maria Ribelles; José A. Richter; Josep M. Martí-Climent

OBJECTIVES The aim of this study was to assess the dose received by members of the public due to close contact with patients undergoing nuclear medicine procedures during radiopharmaceutical incorporation, and comparing it with the emitted radiation dose when the test was complete, in order to establish recommendations. MATERIAL AND METHODS A prospective study was conducted on 194 patients. H*(10) dose rates were measured at 0.1, 0.5, and 1.0m after the radiopharmaceutical administration, before the image acquisition, and at the end of the nuclear medicine procedure. Effective dose for different close contact scenarios were calculated, according to 95th percentile value (bone scans) and the maximum value (remaining tests). RESULTS During the radiopharmaceutical incorporation, a person who stays with another injected patient in the same waiting room may receive up to 0.59 mSv. If the patient had a medical appointment, or went to a restaurant or a coffee shop, members of the public could receive 23, 43, and 22 μSv, respectively. After finishing the procedure, these doses are reduced by a factor 3. In most of the studies, the use of private instead of public transport may reduce the dose by more than a factor 6. CONCLUSION It is recommended to increase the distance between the patients during the radiopharmaceutical incorporation and to distribute them according to the diagnostic procedure. Patients should be encouraged to use private instead of public transport. Depending on the number of nuclear medicine outpatients per year attended by a physician, it could be necessary to apply restrictions.


Medical Physics | 2016

SU-F-T-582: Small Field Dosimetry in Radiosurgery Collimators with a Stealth Chamber

Juan Diego Azcona; Benigno Barbés

PURPOSE The extraction of a reference signal for measuring small fields in scanning mode can be problematic. In this work we describe the use of a transmission chamber in small field dosimetry for radiosurgery collimators and compare TMR curves obtained with stereotactic diode and microionization chamber. METHODS Four radiosurgery cones of diameters 5, 10, 12.5, and 15mm supplied by Elekta Medical were commissioned in a 6MV FFF beam from an Elekta Versa linac. A transmission chamber manufactured by IBA (Stealth chamber) was attached to the lower part of the collimators and used for PDD and profile measurements in scanning mode with a Scanditronix stereotactic diode. It was also used for centering the stereotactic diode in the water tank to measure TMR and output factors, by integrating the signal. TMR measurements for all collimators and the OF for the largest collimator were also acquired on a polystyrene PTW 29672 phantom with a PTW PinPoint 3D chamber 0.016 cm3 volume. RESULTS Measured TMR with diode and microionization chamber agreed very well with differences larger than 1% only for depths above 15cm, except the smaller collimator, for which differences were always smaller than 2%. Calculated TMR were significantly different (up to 7%) from measured TMR. The differences are attributed to the change in response of the diode with depth, because the effective field aperture varies with depth. Furthermore, neglecting the ratio of phantom-scatter factors in the conversion formula also contributes to this difference. OF measured with diode and chamber showed a difference of 3.5%. CONCLUSION The transmission chamber overcomes the problem of extracting a reference signal and is of great help for small field commissioning. Calculating TMR from PDD is strongly discouraged. Good agreement was found when comparing measurements of TMR with stereotactic diode in water with measurements with microionization chamber in polystyrene.


Cancer Research | 2016

Abstract 4012: Improving radiotherapy abscopal effects with anti-PD1 and anti-CD137-based immunotherapy

MariaE. Rodríguez-Ruiz; Inmaculada Rodriguez; Saray Garasa; Benigno Barbés; Jose Luis Solorzano; Jose Luis Perez Gracia; Sara Labiano; Arantza Azpilikueta; Elixabet Bolaños; Alfonso R. Sánchez-Paulete; M. Angela Aznar; Ana Rouzaut; Maria Jure-Kunkel; Iñaki Etxeberria; Carlos Alfaro; Carmen Oñate; Mariano Ponz; Ignacio Melero

Radiotherapy is considered an efficacious local tool to erradicate or at least control cancer progression. However, recent lines of preclinical and clinical evidence indicate that proimmune effects of radiotherapy can be synergistically augmented with immunostimulatory monoclonal antibodies (mAb) to act both on irradiated tumor lessions and on distant, non-irradiated tumor sites. The combination of radiotherapy with immunostimulatory anti-PD1 and anti-CD137 mAbs was conducive to favourable effects on distant non-irradiated tumor lesions as observed on transplanted MC38 (colorectal cancer), B16OVA (melanoma) and 4T1 (breast cancer) models. Immunotherapy and radiotherapy synergized both when irradiation was given using external beams or provided with brachytherapy. The therapeutic activity was crucially performed by CD8 T cells, as found in selective depletion experiments. The irradiation regimen induced immune infiltrate changes in the irradiated and non-irradiated lesions featured by reductions in the content of effector T cells, Tregs, and myeloid-derived supresor cells (MDSC), while effector T cells were expressing more intracellular IFN gamma in both the irradiated and contralateral tumors. Importantly, 48h following irradiation CD8+ TILs showed brighter expression of CD137 and PD-1 thereby displaying more target molecules for the activity of the corresponding monoclonal antibodies. Likewise, PD-1 and CD137 were induced on tumor infiltrating lymphocytes from surgically excised of human carcinoma lessions that were irradiated ex-vivo. These findings advocate for clinical development of immunotherapy combinations with anti-PD1 plus anti-CD137 mAbs that can be synergistically accompained by radiotherapy strategies on treatable lesions, even if leaving disease outside the irradiation field. Citation Format: MariaE. Rodriguez-Ruiz, Inmaculada Rodriguez, Saray Garasa, Benigno Barbes, Jose Luis Solorzano, Jose Luis Perez Gracia, Sara Labiano, Arantza Azpilikueta, Elixabet Bolanos, Alfonso R. Sanchez-Paulete, M. Angela Aznar, Ana Rouzaut, Maria Jure-Kunkel, Inaki Etxeberria, Carlos Alfaro, Carmen Onate, Mariano Ponz, Ignacio Melero. Improving radiotherapy abscopal effects with anti-PD1 and anti-CD137-based immunotherapy. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 4012.


Medical Physics | 2014

SU-E-J-11: A New Optical Method to Register Patient External Motion

Benigno Barbés; J Foronda; Juan Diego Azcona; M Moreno; Elena Prieto; Javier Burguete

PURPOSE To devise and implement a new system to measure and register the patient motion during radiotherapy treatments. METHODS The system can obtain the position of several points in the 3D-space, through their projections in the 2D-images recorded by two cameras. The algorithm needs a series of constants, that are obtained using the images of a calibrated phantom. To test the system, some adhesive labels were placed on the surface of an object. Two cameras recorded the moving object over time. An in-house developed software localized the labels in each image. In the first pair of images, the program used a first approximation given by the user. In the subsequent images, it used the last position as an approximate location. The final exact coordinates of the point were obtained in a two-step process using the contrast of the images. From the 2D-positions of the point in each frame, the 3D-trajectories of each of these marks were obtained. The system was tested with linear displacements, oscillations of a mechanical oscillator, circular trajectories of a rotating disk, and with respiratory motion of a volunteer. RESULTS Trajectories of several points were reproduced with sub-millimeter accuracy in the three directions of the space. The system was able to follow periodic motion with amplitudes lower than 0.5mm; and trajectories of rotating points at speeds up to 200mm/s. The software could also track accurately the respiration motion of a person. CONCLUSION A new, inexpensive optical tracking system for patient motion has been demonstrated. The system detects motion with high accuracy. Installation and calibration of the system is simple and quick. Data collection is not expected to involve any discomfort for the patient, nor any delay for the treatment. The system could be also used as a method of warning for patient movements, and for gating. We acknowledge financial support from Fundacion Mutua Madrilena, Madrid, Spain.

Collaboration


Dive into the Benigno Barbés's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge