Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benito Campos is active.

Publication


Featured researches published by Benito Campos.


Cell | 2013

The somatic genomic landscape of glioblastoma.

Cameron Brennan; Roel G.W. Verhaak; Aaron McKenna; Benito Campos; Houtan Noushmehr; Sofie R. Salama; Siyuan Zheng; Debyani Chakravarty; J. Zachary Sanborn; Samuel H. Berman; Rameen Beroukhim; Brady Bernard; Chang-Jiun Wu; Giannicola Genovese; Ilya Shmulevich; Jill S. Barnholtz-Sloan; Lihua Zou; Rahulsimham Vegesna; Sachet A. Shukla; Giovanni Ciriello; W.K. Yung; Wei Zhang; Carrie Sougnez; Tom Mikkelsen; Kenneth D. Aldape; Darell D. Bigner; Erwin G. Van Meir; Michael D. Prados; Andrew E. Sloan; Keith L. Black

We describe the landscape of somatic genomic alterations based on multidimensional and comprehensive characterization of more than 500 glioblastoma tumors (GBMs). We identify several novel mutated genes as well as complex rearrangements of signature receptors, including EGFR and PDGFRA. TERT promoter mutations are shown to correlate with elevated mRNA expression, supporting a role in telomerase reactivation. Correlative analyses confirm that the survival advantage of the proneural subtype is conferred by the G-CIMP phenotype, and MGMT DNA methylation may be a predictive biomarker for treatment response only in classical subtype GBM. Integrative analysis of genomic and proteomic profiles challenges the notion of therapeutic inhibition of a pathway as an alternative to inhibition of the target itself. These data will facilitate the discovery of therapeutic and diagnostic target candidates, the validation of research and clinical observations and the generation of unanticipated hypotheses that can advance our molecular understanding of this lethal cancer.


Clinical Cancer Research | 2010

Differentiation therapy exerts antitumor effects on stem-like glioma cells.

Benito Campos; Feng Wan; Mohammad Farhadi; Aurélie Ernst; Felix Zeppernick; Katrin E. Tagscherer; Rezvan Ahmadi; Jennifer Lohr; Christine Dictus; Georg Gdynia; Stephanie E. Combs; Violaine Goidts; Burkhard Helmke; Volker Eckstein; Wilfried Roth; Peter Lichter; Andreas Unterberg; Bernhard Radlwimmer; Christel Herold-Mende

Purpose: Stem-like tumor cells comprise a highly tumorigenic and therapy-resistant tumor subpopulation, which is believed to substantially influence tumor initiation and therapy resistance in glioma. Currently, therapeutic, drug-induced differentiation is considered as a promising approach to eradicate this tumor-driving cell population; retinoic acid is well known as a potent modulator of differentiation and proliferation in normal stem cells. In glioma, knowledge about the efficacy of retinoic acid–induced differentiation to target the stem-like tumor cell pool could have therapeutic implications. Experimental Design: Stem-like glioma cells (SLGC) were differentiated with all-trans retinoic acid–containing medium to study the effect of differentiation on angiogenesis, invasive growth, as well as radioresistance and chemoresistance of SLGCs. In vivo effects were studied using live microscopy in a cranial window model. Results: Our data suggest that in vitro differentiation of SLGCs induces therapy-sensitizing effects, impairs the secretion of angiogenic cytokines, and disrupts SLGCs motility. Further, ex vivo differentiation reduces tumorigenicity of SLGCs. Finally, we show that all-trans retinoic acid treatment alone can induce antitumor effects in vivo. Conclusions: Altogether, these results highlight the potential of differentiation treatment to target the stem-like cell population in glioblastoma. Clin Cancer Res; 16(10); 2715–28. ©2010 AACR.


Oncogene | 2008

Apoptosis-based treatment of glioblastomas with ABT-737, a novel small molecule inhibitor of Bcl-2 family proteins

Katrin E. Tagscherer; Anne Fassl; Benito Campos; Mohammad Farhadi; A Kraemer; Barbara C. Böck; Stephan Macher-Goeppinger; Bernhard Radlwimmer; Otmar D. Wiestler; Christel Herold-Mende; Wilfried Roth

Defects in the apoptotic signaling cascades contribute to the poor therapeutic response of malignant gliomas. As glioblastomas are characterized by high expression levels of anti-apoptotic Bcl-2 family proteins, we studied the effects of the novel Bcl-2 inhibitor, ABT-737, on malignant glioma cells. ABT-737 treatment released the pro-apoptotic Bax protein from its binding partner Bcl-2 and potently induced apoptotic cell death in glioblastoma cells in vitro and in vivo. The local administration of ABT-737 prolonged the survival in an intracranial glioma xenograft model. Downregulation of Mcl-1 and overexpression of Bcl-2 sensitized the cells to ABT-737-mediated apoptosis. Moreover, ABT-737 potentiated the cytotoxicity of the chemotherapeutic drugs vincristine and etoposide, and of the death ligand TRAIL. As glioma stem cells may play a crucial role for the tumor progression and the resistance to treatment in glioblastomas, we investigated the effects of ABT-737 on the subpopulation of glioma cells exhibiting stem cell characteristics. Inhibition of proliferation and induction of apoptosis by ABT-737 were less efficient in glioma stem cells than in non-stem cell-like glioma cells. As the resistance of glioma stem cells was associated with high Mcl-1 expression levels, ABT-737 treatment combined with downregulation of Mcl-1 could represent a promising novel approach in glioblastoma treatment.


Nature Medicine | 2013

BCAT1 promotes cell proliferation through amino acid catabolism in gliomas carrying wild-type IDH1

Martje Tönjes; Sebastian Barbus; Yoon Jung Park; Wei Wang; Magdalena Schlotter; Anders M. Lindroth; Sabrina Pleier; Alfa H.C. Bai; Daniela Karra; Rosario M. Piro; Jörg Felsberg; Adele Addington; Dieter Lemke; Irene Weibrecht; Volker Hovestadt; Claudio G. Rolli; Benito Campos; Sevin Turcan; Dominik Sturm; Hendrik Witt; Timothy A. Chan; Christel Herold-Mende; Ralf Kemkemer; Rainer König; Kathrin V. Schmidt; William Edmund Hull; Stefan M. Pfister; Manfred Jugold; Susan M. Hutson; Christoph Plass

Here we show that glioblastoma express high levels of branched-chain amino acid transaminase 1 (BCAT1), the enzyme that initiates the catabolism of branched-chain amino acids (BCAAs). Expression of BCAT1 was exclusive to tumors carrying wild-type isocitrate dehydrogenase 1 (IDH1) and IDH2 genes and was highly correlated with methylation patterns in the BCAT1 promoter region. BCAT1 expression was dependent on the concentration of α-ketoglutarate substrate in glioma cell lines and could be suppressed by ectopic overexpression of mutant IDH1 in immortalized human astrocytes, providing a link between IDH1 function and BCAT1 expression. Suppression of BCAT1 in glioma cell lines blocked the excretion of glutamate and led to reduced proliferation and invasiveness in vitro, as well as significant decreases in tumor growth in a glioblastoma xenograft model. These findings suggest a central role for BCAT1 in glioma pathogenesis, making BCAT1 and BCAA metabolism attractive targets for the development of targeted therapeutic approaches to treat patients with glioblastoma.


Clinical Cancer Research | 2009

Genomic and Expression Profiling of Glioblastoma Stem Cell-Like Spheroid Cultures Identifies Novel Tumor-Relevant Genes Associated with Survival

Aurélie Ernst; Stefanie Hofmann; Rezvan Ahmadi; Natalia Becker; Andrey Korshunov; Felix Engel; Christian Hartmann; Jörg Felsberg; Michael Sabel; Heike Peterziel; Moritz Durchdewald; Jochen Hess; Sebastian Barbus; Benito Campos; Anna Starzinski-Powitz; Andreas Unterberg; Guido Reifenberger; Peter Lichter; Christel Herold-Mende; Bernhard Radlwimmer

Purpose: Glioblastoma spheroid cultures are enriched in tumor stem-like cells and therefore may be more representative of the respective primary tumors than conventional monolayer cultures. We exploited the glioma spheroid culture model to find novel tumor-relevant genes. Experimental Design: We carried out array-based comparative genomic hybridization of spheroid cultures derived from 20 glioblastomas. Microarray-based gene expression analysis was applied to determine genes with differential expression compared with normal brain tissue and to nonneoplastic brain spheroids in glioma spheroid cultures. The protein expression levels of three candidates were determined by immunohistochemistry on tissue microarrays and correlated with clinical outcome. Functional analysis of PDPN was done. Results: Genomic changes in spheroid cultures closely resembled those detected in primary tumors of the corresponding patients. In contrast, genomic changes in serum-grown monolayer cultures established from the same patients did not match well with the respective primary tumors. Microarray-based gene expression analysis of glioblastoma spheroid cultures identified a set of novel candidate genes being upregulated or downregulated relative to normal brain. Quantitative real-time PCR analyses of 8 selected candidate genes in 20 clinical glioblastoma samples validated the microarray findings. Immunohistochemistry on tissue microarrays revealed that expression of AJAP1, EMP3, and PDPN was significantly associated with overall survival of astrocytic glioma patients. Invasive capacity and RhoA activity were decreased in PDPN-silenced spheroids. Conclusion: We identified a set of novel candidate genes that likely play a role in glioblastoma pathogenesis and implicate AJAP1, EMP3, and PDPN as molecular markers associated with the clinical outcome of glioma patients. (Clin Cancer Res 2009;15(21):6541–50)


Brain | 2010

Bone morphogenetic protein-7 release from endogenous neural precursor cells suppresses the tumourigenicity of stem-like glioblastoma cells

Sridhar R Chirasani; Alexander Sternjak; Peter Wend; Stefan Momma; Benito Campos; Ilaria M. Herrmann; Daniel Graf; Thimios A. Mitsiadis; Christel Herold-Mende; Daniel Besser; Michael Synowitz; Helmut Kettenmann; Rainer Glass

Glioblastoma cells with stem-like properties control brain tumour growth and recurrence. Here, we show that endogenous neural precursor cells perform an anti-tumour response by specifically targeting stem-like brain tumour cells. In vitro, neural precursor cells predominantly express bone morphogenetic protein-7; bone morphogenetic protein-7 is constitutively released from neurospheres and induces canonical bone morphogenetic protein signalling in stem-like glioblastoma cells. Exposure of human and murine stem-like brain tumour cells to neurosphere-derived bone morphogenetic protein-7 induces tumour stem cell differentiation, attenuates stem-like marker expression and reduces self-renewal and the ability for tumour initiation. Neurosphere-derived or recombinant bone morphogenetic protein-7 reduces glioblastoma expansion from stem-like cells by down-regulating the transcription factor Olig2. In vivo, large numbers of bone morphogenetic protein-7-expressing neural precursors encircle brain tumours in young mice, induce canonical bone morphogenetic protein signalling in stem-like glioblastoma cells and can thereby attenuate tumour formation. This anti-tumour response is strongly reduced in older mice. Our results indicate that endogenous neural precursor cells protect the young brain from glioblastoma by releasing bone morphogenetic protein-7, which acts as a paracrine tumour suppressor that represses proliferation, self-renewal and tumour-initiation of stem-like glioblastoma cells.


Cancer Discovery | 2012

microRNA Regulatory Network Inference Identifies miR-34a as a Novel Regulator of TGF-β Signaling in Glioblastoma

Giannicola Genovese; Ayla Ergun; Sachet A. Shukla; Benito Campos; Jason A. Hanna; Papia Ghosh; Steven N. Quayle; Kunal Rai; Simona Colla; Haoquiang Ying; Chang-Jiun Wu; Sharmistha Sarkar; Yonghong Xiao; Jianhua Zhang; Hailei Zhang; Lawrence Kwong; Katherine Dunn; Wolf Ruprecht Wiedemeyer; Cameron Brennan; Hongwu Zheng; David L. Rimm; James J. Collins; Lynda Chin

UNLABELLED Leveraging The Cancer Genome Atlas (TCGA) multidimensional data in glioblastoma, we inferred the putative regulatory network between microRNA and mRNA using the Context Likelihood of Relatedness modeling algorithm. Interrogation of the network in context of defined molecular subtypes identified 8 microRNAs with a strong discriminatory potential between proneural and mesenchymal subtypes. Integrative in silico analyses, a functional genetic screen, and experimental validation identified miR-34a as a tumor suppressor in proneural subtype glioblastoma. Mechanistically, in addition to its direct regulation of platelet-derived growth factor receptor-alpha (PDGFRA), promoter enrichment analysis of context likelihood of relatedness-inferred mRNA nodes established miR-34a as a novel regulator of a SMAD4 transcriptional network. Clinically, miR-34a expression level is shown to be prognostic, where miR-34a low-expressing glioblastomas exhibited better overall survival. This work illustrates the potential of comprehensive multidimensional cancer genomic data combined with computational and experimental models in enabling mechanistic exploration of relationships among different genetic elements across the genome space in cancer. SIGNIFICANCE We illustrate here that network modeling of complex multidimensional cancer genomic data can generate a framework in which to explore the biology of cancers, leading to discovery of new pathogenetic insights as well as potential prognostic biomarkers. Specifically in glioblastoma, within the context of the global network, promoter enrichment analysis of network edges uncovered a novel regulation of TGF-β signaling via a Smad4 transcriptomic network by miR-34a.


Brain Pathology | 2010

The Utility and Limitations of Neurosphere Assay, CD133 Immunophenotyping and Side Population Assay in Glioma Stem Cell Research

Feng Wan; Suojun Zhang; Ruifan Xie; Baocheng Gao; Benito Campos; Christel Herold-Mende; Ting Lei

The newly proposed glioma stem cell (GSC) hypothesis may re‐model the way we diagnose and treat the tumor, which highlights the need for a complete knowledge on the genetic and epigenetic “blueprints” of GSCs. To identify the true “stemness” signatures, pure GSC populations are primarily needed. Reliable in vitro methods enriching for GSCs and thereby identifying the key stem‐like characteristics constitute the preliminary step forward. We discuss in this review the current widely used methods for enriching and isolating GSCs, namely neurosphere assay, CD133 Immunophenotyping and side population assay, and detail their limitations and potential pitfalls that could complicate interpretation of corresponding results.


Oncogene | 2012

RNAi screening in glioma stem-like cells identifies PFKFB4 as a key molecule important for cancer cell survival

V. Goidts; J. Bageritz; L. Puccio; S. Nakata; M. Zapatka; Sebastian Barbus; G. Toedt; Benito Campos; Andrey Korshunov; S. Momma; E Van Schaftingen; Guido Reifenberger; Christel Herold-Mende; Peter Lichter; Bernhard Radlwimmer

The concept of cancer stem-like cells (CSCs) has gained considerable attention in various solid tumors including glioblastoma, the most common primary brain tumor. This sub-population of tumor cells has been intensively investigated and their role in therapy resistance as well as tumor recurrence has been demonstrated. In that respect, development of therapeutic strategies that target CSCs (and possibly also the tumor bulk) appears a promising approach in patients suffering from primary brain tumors. In the present study, we utilized RNA interference (RNAi) to screen the complete human kinome and phosphatome (682 and 180 targets, respectively) in order to identify genes and pathways relevant for the survival of brain CSCs and thereby potential therapeutical targets for glioblastoma. We report of 46 putative candidates including known survival-related kinases and phosphatases. Interestingly, a number of genes identified are involved in metabolism, especially glycolysis, such as PDK1 and PKM2 and, most prominently PFKFB4. In vitro studies confirmed an essential role of PFKFB4 in the maintenance of brain CSCs. Furthermore, high PFKFB4 expression was associated with shorter survival of primary glioblastoma patients. Our findings support the importance of the glycolytic pathway in the maintenance of malignant glioma cells and brain CSCs and imply tumor metabolism as a promising therapeutic target in glioblastoma.


Brain Pathology | 2013

LGR5 is a marker of poor prognosis in glioblastoma and is required for survival of brain cancer stem-like cells

Susumu Nakata; Benito Campos; Josephine Bageritz; Justo Lorenzo Bermejo; Natalia Becker; Felix Engel; Till Acker; Stefan Momma; Christel Herold-Mende; Peter Lichter; Bernhard Radlwimmer; Violaine Goidts

In various types of cancers including glioblastoma, accumulating evidence show the existence of cancer stem‐like cells (CSCs), characterized by stem cell marker expression, capability of differentiation and self‐renewal, and high potential for tumor propagation in vivo. LGR5, whose expression is positively regulated by the Wnt signaling pathway, is a stem cell marker in intestinal mucosa and hair follicle in the skin. As Wnt signaling is also involved in brain development, the function of LGR5 in the maintenance of brain CSCs is to be assessed. Our study showed that the LGR5 transcript level was increased in CSCs. Co‐immunofluorescence staining demonstrated the co‐localization of CD133‐ and LGR5‐positive cells in glioblastoma tissue sections. Functionally, silencing of LGR5 by lentiviral shRNA‐mediated knockdown induced apoptosis in brain CSCs. Moreover, LGR5 depletion led to a downregulation of L1 cell adhesion molecule expression. In line with an important function in glioma tumorigenesis, LGR5 expression increased with glioma progression and correlated with an adverse outcome. Our findings suggest that LGR5 plays a role in maintenance and/or survival of brain CSCs.

Collaboration


Dive into the Benito Campos's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rezvan Ahmadi

University Hospital Heidelberg

View shared research outputs
Top Co-Authors

Avatar

Bernhard Radlwimmer

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jörg Felsberg

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar

Peter Lichter

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Cameron Brennan

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Giannicola Genovese

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge