Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benjamas Cheirsilp is active.

Publication


Featured researches published by Benjamas Cheirsilp.


Bioresource Technology | 2012

Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation.

Benjamas Cheirsilp; Salwa Torpee

Microalgae capable of accumulating high lipid content were screened in photoautotrophic, heterotrophic and mixotrophic cultures. The biomass and lipid production of all tested strains in mixotrophic culture were notably enhanced in comparison with photoautotrophic and heterotrophic cultures. Among the tested strains, marine Chlorella sp. and Nannochloropsis sp. were ideal candidates for biodiesel production because of their high lipid production. The influence of light intensity and initial glucose concentration on growth and lipid content of both strains were investigated. Although increasing light intensity and initial glucose concentration enhanced the growth of both strains, it reduced their lipid content. To produce a high amount of biomass with high lipid content, a fed-batch cultivation with stepwise increasing light intensity was performed. The lipid production by this strategy was approximately twice that of conventional batch cultivation. The main fatty acid compositions of the two microalgae were C16-C18 (>80%) which are appropriate for biodiesel production.


Bioresource Technology | 2011

Effect of nitrogen, salt, and iron content in the growth medium and light intensity on lipid production by microalgae isolated from freshwater sources in Thailand

Chittra Yeesang; Benjamas Cheirsilp

Four green microalgae (TRG, KB, SK, and PSU) identified as Botryococcus spp. by morphological criteria were isolated from lakes and freshwater ponds in southern Thailand. In nitrogen-rich medium the strains achieved a lipid content of 25.8%, 17.8%, 15.8% and 5.7%, respectively. A combination of nitrogen deficiency, moderately high light intensity (82.5 μE m(-2) s(-1)) and high level of iron (0.74 mM) improved lipid accumulation in TRG, KB, SK, and PSU strains up to 35.9%, 30.2%, 28.4% and 14.7%, respectively. The lipid contents and plant oil-like fatty acid composition of the microalgae suggested their potential as biodiesel feedstock.


New Biotechnology | 2011

Mixed culture of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for lipid production from industrial wastes and its use as biodiesel feedstock

Benjamas Cheirsilp; Warangkana Suwannarat; Rujira Niyomdecha

A mixed culture of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris was performed to enhance lipid production from industrial wastes. These included effluent from seafood processing plant and molasses from sugar cane plant. In the mixed culture, the yeast grew faster and the lipid production was higher than that in the pure cultures. This could be because microalga acted as an oxygen generator for yeast, while yeast provided CO(2) to microalga and both carried out the production of lipids. The optimal conditions for lipid production by the mixed culture were as follows: ratio of yeast to microalga at 1:1; initial pH at 5.0; molasses concentration at 1%; shaking speed at 200 rpm; and light intensity at 5.0 klux under 16:8 hours light and dark cycles. Under these conditions, the highest biomass of 4.63±0.15 g/L and lipid production of 2.88±0.16 g/L were obtained after five days of cultivation. In addition, the plant oil-like fatty acid composition of yeast and microalgal lipids suggested their high potential for use as biodiesel feedstock.


Bioresource Technology | 2013

Industrial wastes as a promising renewable source for production of microbial lipid and direct transesterification of the lipid into biodiesel.

Benjamas Cheirsilp; Yasmi Louhasakul

Two strategies of converting industrial wastes to microbial lipid and direct transesterification of obtained lipid into biodiesel were attempted. Several oleaginous yeasts were cultivated on industrial wastes. The yeasts grew well on the wastes with low C/N ratio (i.e. serum latex) but accumulated high lipid content only when the wastes had a high C/N ratio (i.e. palm oil mill effluent and crude glycerol). The yeast lipids have similar fatty acid composition to that of plant oil indicating their potential use as biodiesel feedstocks. The combination of these wastes and two-phase cultivation for cell growth and lipid accumulation improved lipid productivity of the selected yeast. The direct transesterification process that eliminates cell drying and lipid extraction steps, gave comparable yield of biodiesel (fatty acid methyl ester >70% within 1h) to that of conventional method. These two successful strategies may contribute greatly to industrializing oil production from microbes and industrial wastes.


Journal of Biotechnology | 2003

Enhanced kefiran production by mixed culture of Lactobacillus kefiranofaciens and Saccharomyces cerevisiae

Benjamas Cheirsilp; Hiroshi Shimizu; Suteaki Shioya

In a batch mixed culture of Lactobacillus kefiranofaciens and Saccharomyces cerevisiae, which could assimilate lactic acid, cell growth and kefiran production rates of L. kefiranofaciens significantly increased, compared with those in pure cultures. The kefiran production rate was 36 mg l(-1) h(-1) in the mixed culture under the anaerobic condition, which was greater than that in the pure culture (24 mg l(-1) h(-1)). Under the aerobic condition, a more intensive interaction between these two strains was observed and higher kefiran production rate (44 mg l(-1) h(-1)) was obtained compared with that under the anaerobic condition. Kefiran production was further enhanced by an addition of fresh medium in the fed-batch mixed culture. In the fed-batch mixed culture, a final kefiran concentration of 5.41 g l(-1) was achieved at 87 h, thereby attaining the highest productivity at 62 mg l(-1) h(-1). Simulation study considered the reduction of lactic acid in pure culture was performed to estimate the additional effect of coculture with S. cerevisiae. Slightly higher cell growth and kefiran production rates in the mixed culture than those expected from pure culture by simulation were observed. These results suggest that coculture of L. kefiranofaciens and S. cerevisiae not only reduces the lactic acid concentration by consumption but also stimulates cell growth and kefiran production of L. kefiranofaciens.


Journal of Bioscience and Bioengineering | 2003

Interactions between Lactobacillus kefiranofaciens and Saccharomyces cerevisiae in mixed culture for kefiran production

Benjamas Cheirsilp; Hirofumi Shoji; Hiroshi Shimizu; Suteaki Shioya

Since a positive effect on the growth and kefiran production of Lactobacillus kefiranofaciens was observed in a mixed culture with Saccharomyces cerevisiae, the elucidation of the interactions between L. kefiranofaciens and S. cerevisiae may lead to higher productivity. Hence, the microbial interaction of each strain was investigated. Apart from the positive effect of a reduction in the amount of lactic acid by S. cerevisiae, a positive effect of S. cerevisiae on the growth and kefiran production of L. kefiranofaciens in a mixed culture was observed. Various experiments were carried out to study this effect. In this study, the observed increase in capsular kefiran in a mixed culture with inactivated S. cerevisiae correlated well to that in an anaerobic mixed culture. Differences in capsular kefiran production were observed for different initial S. cerevisiae concentrations under anaerobic conditions. From these fermentation results, it was concluded that the physical contact with S. cerevisiae mainly enhanced the capsular kefiran production of L. kefiranofaciens in a mixed culture. Therefore, in an anaerobic mixed culture, this direct contact resulted in higher capsular kefiran production than that in pure culture.


Annals of Microbiology | 2012

Co-culture of an oleaginous yeast Rhodotorula glutinis and a microalga Chlorella vulgaris for biomass and lipid production using pure and crude glycerol as a sole carbon source

Benjamas Cheirsilp; Suleeporn Kitcha; Salwa Torpee

This study has shown that a co-culture of an oleaginous yeast Rhodotorula glutinis TISTR 5159 and a microalga Chlorella vulgaris var. vulgaris TISTR 8261 enhanced biomass and lipid production from glycerol. It is possible that the microalga may function as an oxygen producer in the co-culture and enhance the growth of yeast. The use of 3% pure glycerol as a carbon source and urea as a nitrogen source with a molar carbon-to-nitrogen (C/N) ratio of 32 gave the highest biomass and lipid production. These produced a 5.7-fold and 3.8-fold of biomass and lipid, respectively, compared to the initial unoptimized condition. The co-culture system was also applied to convert crude glycerol, a by-product from a biodiesel plant, to biomass and lipid. The lipid produced from the crude glycerol by the co-culture was mainly composed of palmitic acid (C16:0) 40.52% and oleic acid (C18:1) 21.30%, which was a plant oil-like fatty acid composition. This suggests that it has a high potential to be used as a biodiesel feedstock.


Applied Microbiology and Biotechnology | 2001

Modelling and optimization of environmental conditions for kefiran production by Lactobacillus kefiranofaciens

Benjamas Cheirsilp; Hiroshi Shimizu; Suteaki Shioya

Abstract. A mathematical model for kefiran production by Lactobacillus kefiranofaciens was established, in which the effects of pH, substrate and product on cell growth, exopolysaccharide formation and substrate assimilation were considered. The model gave a good representation both of the formation of exopolysaccharides (which are not only attached to cells but also released into the medium) and of the time courses of the production of galactose and glucose in the medium (which are produced and consumed by the cells). Since pH and both lactose and lactic acid concentrations differently affected production and growth activity, the model included the effects of pH and the concentrations of lactose and lactic acid. Based on the mathematical model, an optimal pH profile for the maximum production of kefiran in batch culture was obtained. In this study, a simplified optimization method was developed, in which the optimal pH profile was determined at a particular final fermentation time. This was based on the principle that, at a certain time, switching from the maximum specific growth rate to the critical one (which yields the maximum specific production rate) results in maximum production. Maximum kefiran production was obtained, which was 20% higher than that obtained in the constant-pH control fermentation. A genetic algorithm (GA) was also applied to obtain the optimal pH profile; and it was found that practically the same solution was obtained using the GA.


Bioresource Technology | 2013

Felled oil palm trunk as a renewable source for biobutanol production by Clostridium spp.

Itsara Komonkiat; Benjamas Cheirsilp

This study aimed to convert felled oil palm trunk to biobutanol by Clostridium spp. For efficient utilization of oil palm trunk, it was separated into sap and trunk fiber. The sap was used directly while the trunk fiber was hydrolyzed to fermentable sugars before use. Among five clostridia strains screened, Clostridium acetobutylicum DSM 1731 was the most suitable strain for butanol production from the sap without any supplementation of nutrients. It produced the highest amount of butanol (14.4 g/L) from the sap (sugar concentration of 50 g/L) with butanol yield of 0.35 g/g. When hydrolysate from the trunk fiber was used as an alternative carbon source (sugar concentration of 30 g/L), of the strains tested Clostridium beijerinckii TISTR 1461 produced the highest amount of butanol (10.0 g/L) with butanol yield of 0.41 g/g. The results presented herein suggest that oil palm trunk is a promising renewable substrate for biobutanol production.


New Biotechnology | 2011

Production and properties of two collagenases from bacteria and their application for collagen extraction.

Warinda Suphatharaprateep; Benjamas Cheirsilp; Akkasit Jongjareonrak

Two collagenolytic protease (collagenase) producing bacteria, a Gram positive Bacillus cereus CNA1 and a Gram negative Klebsiella pneumoniae CNL3, were isolated under alkaline and acidic conditions, respectively. The production of collagenase by these two bacteria was optimized. Glycerol was the suitable carbon source for collagenase production by both strains. The optimal initial pH values for collagenase production by CNA1 and CNL3 were 7.5 and 6.0, respectively, and the optimal temperature was 37°C for both strains. The maximum activity of the partially purified collagenase from CNA1 was at pH 7.0 and 45°C. Its pH and thermal stability were in the range of 6-8 and below 40°C, respectively. The maximum activity of the partially purified collagenase from CNL3 was at pH 6.0 and 40°C. Its pH and thermal stability were in the range of 5-7 and below 37°C, respectively. The collagenase from CNL3 was more stable at a low pH compared with that from CNA1. Collagenases from both strains were used to extract collagen from salmon fish skin. The use of collagenases from CNA1 and CNL3 combined with acid treatment yielded a high collagen extraction of 54.6% and 53.0%, of the fish skin dry weight, respectively.

Collaboration


Dive into the Benjamas Cheirsilp's collaboration.

Top Co-Authors

Avatar

Poonsuk Prasertsan

Prince of Songkla University

View shared research outputs
Top Co-Authors

Avatar

Suleeporn Kitcha

Prince of Songkla University

View shared research outputs
Top Co-Authors

Avatar

Yasmi Louhasakul

Prince of Songkla University

View shared research outputs
Top Co-Authors

Avatar

Jaruporn Rakmai

Prince of Songkla University

View shared research outputs
Top Co-Authors

Avatar

Kamontam Umsakul

Prince of Songkla University

View shared research outputs
Top Co-Authors

Avatar

Sirasit Srinuanpan

Prince of Songkla University

View shared research outputs
Top Co-Authors

Avatar

Aran H-Kittikun

Prince of Songkla University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge