Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benjamin A. Walter is active.

Publication


Featured researches published by Benjamin A. Walter.


The Spine Journal | 2013

Role of biomechanics in intervertebral disc degeneration and regenerative therapies: what needs repairing in the disc and what are promising biomaterials for its repair?

James C. Iatridis; Steven B. Nicoll; Arthur J. Michalek; Benjamin A. Walter; Michelle S. Gupta

BACKGROUND CONTEXT Degeneration and injuries of the intervertebral disc (IVD) result in large alterations in biomechanical behaviors. Repair strategies using biomaterials can be optimized based on the biomechanical and biological requirements of the IVD. PURPOSE To review the present literature on the effects of degeneration, simulated degeneration, and injury on biomechanics of the IVD, with special attention paid to needle puncture injuries, which are a pathway for diagnostics and regenerative therapies and the promising biomaterials for disc repair with a focus on how those biomaterials may promote biomechanical repair. STUDY DESIGN A narrative review to evaluate the role of biomechanics on disc degeneration and regenerative therapies with a focus on what biomechanical properties need to be repaired and how to evaluate and accomplish such repairs using biomaterials. Model systems for the screening of such repair strategies are also briefly described. METHODS Articles were selected from two main PubMed searches using keywords: intervertebral AND biomechanics (1,823 articles) and intervertebral AND biomaterials (361 articles). Additional keywords (injury, needle puncture, nucleus pressurization, biomaterials, hydrogel, sealant, tissue engineering) were used to narrow the articles down to the topics most relevant to this review. RESULTS Degeneration and acute disc injuries have the capacity to influence nucleus pulposus (NP) pressurization and annulus fibrosus (AF) integrity, which are necessary for an effective disc function and, therefore, require repair. Needle injection injuries are of particular clinical relevance with the potential to influence disc biomechanics, cellularity, and metabolism, yet these effects are localized or small and more research is required to evaluate and reduce the potential clinical morbidity using such techniques. NP replacement strategies, such as hydrogels, are required to restore the NP pressurization or the lost volume. AF repair strategies including cross-linked hydrogels, fibrous composites, and sealants offer promise for regenerative therapies to restore AF integrity. Tissue engineered IVD structures, as a single implantable construct, may promote greater tissue integration due to the improved repair capacity of the vertebral bone. CONCLUSIONS IVD height, neutral zone characteristics, and torsional biomechanics are sensitive to specific alterations in the NP pressurization and AF integrity and must be addressed for an effective functional repair. Synthetic and natural biomaterials offer promise for NP replacement, AF repair, as an AF sealant, or whole disc replacement. Meeting mechanical and biological compatibilities are necessary for the efficacy and longevity of the repair.


Osteoarthritis and Cartilage | 2011

Complex loading affects intervertebral disc mechanics and biology

Benjamin A. Walter; Casey L. Korecki; Devina Purmessur; Peter J. Roughley; Arthur J. Michalek; James C. Iatridis

BACKGROUND Complex loading develops in multiple spinal motions and in the case of hyperflexion is known to cause intervertebral disc (IVD) injury. Few studies have examined the interacting biologic and structural alterations associated with potentially injurious complex loading, which may be an important contributor to chronic progressive degeneration. OBJECTIVE This study tested the hypothesis that low magnitudes of axial compression loading applied asymmetrically can induce IVD injury affecting cellular and structural responses in a large animal IVD ex-vivo model. METHODS Bovine caudal IVDs were assigned to either a control or wedge group (15°) and placed in organ culture for 7 days under static 0.2MPa load. IVD tissue and cellular responses were assessed through confined compression, qRT-PCR, histology and structural and compositional measurements, including Western blot for aggrecan degradation products. RESULTS Complex loading via asymmetric compression induced cell death, an increase in caspase-3 staining (apoptosis), a loss of aggrecan and an increase in aggregate modulus in the concave annulus fibrosis. While an up-regulation of MMP-1, ADAMTS4, IL-1β, and IL-6 mRNA, and a reduced aggregate modulus were induced in the convex annulus. CONCLUSION Asymmetric compression had direct deleterious effects on both tissue and cells, suggesting an injurious loading regime that could lead to a degenerative cascade, including cell death, the production of inflammatory mediators, and a shift towards catabolism. This explant model is useful to assess how injurious mechanical loading affects the cellular response which may contribute to the progression of degenerative changes in large animal IVDs, and results suggest that interventions should address inflammation, apoptosis, and lamellar integrity.


Biochemical and Biophysical Research Communications | 2013

A role for TNFα in intervertebral disc degeneration: A non-recoverable catabolic shift

Devina Purmessur; Benjamin A. Walter; Peter J. Roughley; Damien M. Laudier; Andrew C. Hecht; James C. Iatridis

This study examines the effect of TNFα on whole bovine intervertebral discs in organ culture and its association with changes characteristic of intervertebral disc degeneration (IDD) in order to inform future treatments to mitigate the chronic inflammatory state commonly found with painful IDD. Pro-inflammatory cytokines such as TNFα contribute to disc pathology and are implicated in the catabolic phenotype associated with painful IDD. Whole bovine discs were cultured to examine cellular (anabolic/catabolic gene expression, cell viability and senescence using β-galactosidase) and structural (histology and aggrecan degradation) changes in response to TNFα treatment. Control or TNFα cultures were assessed at 7 and 21 days; the 21 day group also included a recovery group with 7 days TNFα followed by 14 days in basal media. TNFα induced catabolic and anti-anabolic shifts in the nucleus pulposus (NP) and annulus fibrosus (AF) at 7 days and this persisted until 21 days however cell viability was not affected. Data indicates that TNFα increased aggrecan degradation products and suggests increased β-galactosidase staining at 21 days without any recovery. TNFα treatment of whole bovine discs for 7 days induced changes similar to the degeneration processes that occur in human IDD: aggrecan degradation, increased catabolism, pro-inflammatory cytokines and nerve growth factor expression. TNFα significantly reduced anabolism in cultured IVDs and a possible mechanism may be associated with cell senescence. Results therefore suggest that successful treatments must promote anabolism and cell proliferation in addition to limiting inflammation.


Spine | 2015

Inflammatory Kinetics and Efficacy of Anti-inflammatory Treatments on Human Nucleus Pulposus Cells.

Benjamin A. Walter; Devina Purmessur; Morakot Likhitpanichkul; Alan D. Weinberg; Samuel K. Cho; Sheeraz A. Qureshi; Andrew C. Hecht; James C. Iatridis

Study Design. Human nucleus pulposus (NP) cell culture study investigating response to tumor necrosis factor-&agr; (TNF&agr;), effectiveness of clinically available anti-inflammatory drugs, and interactions between proinflammatory cytokines. Objective. To characterize the kinetic response of proinflammatory cytokines released by human NP cells to TNF&agr; stimulation and the effectiveness of multiple anti-inflammatories with 3 substudies: Timecourse, Same-time blocking, Delayed blocking. Summary of Background Data. Chronic inflammation is a key component of painful intervertebral disc degeneration. Improved efficacy of anti-inflammatories requires better understanding of how quickly NP cells produce proinflammatory cytokines and which proinflammatory mediators are most therapeutically advantageous to target. Methods. Degenerated human NP cells (n = 10) were cultured in alginate with or without TNF&agr; (10 ng/mL). Cells were incubated with 1 of 4 anti-inflammatories (anti-IL-6 receptor/atlizumab, IL-1 receptor anatagonist, anti-TNF&agr;/infliximab and sodium pentosan polysulfate/PPS) in 2 blocking-studies designed to determine how intervention timing influences drug efficacy. Cell viability, protein, and gene expression for IL-1&bgr;, IL-6, and IL-8 were assessed. Results. Timecourse: TNF&agr; substantially increased the amount of IL-6, IL-8, and IL-1&bgr;, with IL-1&bgr; and IL-8 reaching equilibrium within ∼72 hours (IL-1&bgr;: 111 ± 40 pg/mL, IL-8: 8478 ± 957 pg/mL), and IL-6 not reaching steady state after 144 hours (1570 ± 435 pg/mL). Anti-TNF&agr; treatment was most effective at reducing the expression of all cytokines measured when added at the same time as TNF&agr; stimulation. Similar trends were observed when drugs were added 72 hours after TNF&agr; stimulation, however, no anti-inflammatories significantly reduced cytokine levels compared with TNF control. Conclusion. IL-1&bgr;, IL-6, and IL-8 were expressed at different rates and magnitudes suggesting different roles for these cytokines in disease. Autocrine signaling of IL-6 or IL-1&bgr; did not contribute to the expression of any proinflammatory cytokines measured in this study. Anti-inflammatory treatments were most effective when applied early in the inflammatory process, when targeting the source of the inflammation. Level of Evidence: N/A


Journal of Biomechanics | 2014

Development and validation of a bioreactor system for dynamic loading and mechanical characterization of whole human intervertebral discs in organ culture.

Benjamin A. Walter; Svenja Illien-Jünger; Philip Nasser; Andrew C. Hecht; James C. Iatridis

Intervertebral disc (IVD) degeneration is a common cause of back pain, and attempts to develop therapies are frustrated by lack of model systems that mimic the human condition. Human IVD organ culture models can address this gap, yet current models are limited since vertebral endplates are removed to maintain cell viability, physiological loading is not applied, and mechanical behaviors are not measured. This study aimed to (i) establish a method for isolating human IVDs from autopsy with intact vertebral endplates, and (ii) develop and validate an organ culture loading system for human or bovine IVDs. Human IVDs with intact endplates were isolated from cadavers within 48h of death and cultured for up to 21 days. IVDs remained viable with ~80% cell viability in nucleus and annulus regions. A dynamic loading system was designed and built with the capacity to culture 9 bovine or 6 human IVDs simultaneously while applying simulated physiologic loads (maximum force: 4kN) and measuring IVD mechanical behaviors. The loading system accurately applied dynamic loading regimes (RMS error <2.5N and total harmonic distortion <2.45%), and precisely evaluated mechanical behavior of rubber and bovine IVDs. Bovine IVDs maintained their mechanical behavior and retained >85% viable cells throughout the 3 week culture period. This organ culture loading system can closely mimic physiological conditions and be used to investigate response of living human and bovine IVDs to mechanical and chemical challenges and to screen therapeutic repair techniques.


PLOS ONE | 2015

TNFα Transport Induced by Dynamic Loading Alters Biomechanics of Intact Intervertebral Discs

Benjamin A. Walter; Morakot Likhitpanichkul; Svenja Illien-Jünger; Peter J. Roughley; Andrew C. Hecht; James C. Iatridis

Objective Intervertebral disc (IVD) degeneration is an important contributor to the development of back pain, and a key factor relating pain and degeneration are the presence of pro-inflammatory cytokines and IVD motion. There is surprisingly limited understanding of how mechanics and inflammation interact in the IVD. This study investigated interactions between mechanical loading and pro-inflammatory cytokines in a large animal organ culture model to address fundamental questions regarding (i.) how inflammatory mediators arise within the IVD, (ii.) how long inflammatory mediators persist, and (iii.) how inflammatory mediators influence IVD biomechanics. Methods Bovine caudal IVDs were cultured for 6 or 20-days under static & dynamic loading with or without exogenous TNFα in the culture medium, simulating a consequence of inflammation of the surrounding spinal tissues. TNFα transport within the IVD was assessed via immunohistochemistry. Changes in IVD structural integrity (dimensions, histology & aggrecan degradation), biomechanical behavior (Creep, Recovery & Dynamic stiffness) and pro-inflammatory cytokines in the culture medium (ELISA) were assessed. Results TNFα was able to penetrate intact IVDs when subjected to dynamic loading but not static loading. Once transported within the IVD, pro-inflammatory mediators persisted for 4–8 days after TNFα removal. TNFα exposure induced changes in IVD biomechanics (reduced diurnal displacements & increased dynamic stiffness). Discussion This study demonstrated that exposure to TNFα, as might occur from injured surrounding tissues, can penetrate healthy intact IVDs, induce expression of additional pro-inflammatory cytokines and alter IVD mechanical behavior. We conclude that exposure to pro-inflammatory cytokine may be an initiating event in the progression of IVD degeneration in addition to being a consequence of disease.


Journal of Anatomy | 2015

Form and function of the intervertebral disc in health and disease: a morphological and stain comparison study

Benjamin A. Walter; Olivia M. Torre; Damien M. Laudier; T. P. Naidich; Andrew C. Hecht; James C. Iatridis

Multiple histologic measurements are commonly used to assess degenerative changes in intervertebral disc (IVD) structure; however, there is no consensus on which stains offer the clearest visualization of specific areas within the IVD. The objective of this study was to compare multiple tinctorial stains, evaluate their ability to highlight structural features within the IVD, and investigate how they influence the capacity to implement a degeneration scoring system. Lumbar IVDs from seven human autopsy specimens were stained using six commonly used stains (Hematoxylin/Eosin, Toluidine Blue, Safranin‐O/Fast Green, Extended FAST, modified Gomoris Trichrome, and Picrosirius Red Alcian Blue). All IVDs were evaluated by three separate graders to independently determine which stains (i) were most effective at discerning different structural features within different regions of the IVDs and (ii) allowed for the most reproducible assessment of degeneration grade, as assessed via the Rutges histological scoring system (Rutges et al. A validated new histological classification for intervertebral disc degeneration. Osteoarthritis Cartilage, 21, 2039‐47). Although Trichrome, XFAST and PR/AB stains were all effective at highlighting different regions of whole IVDs, we recommend the use of PR/AB because it had the highest degree of rater agreement on assigned degeneration grade, allowed greater resolution of degeneration grade, has an inferential relationship between color and composition, and allowed clear differentiation of the different regions and structural disruptions within the IVD. The use of a standard set of stains together with a histological grading scheme can aid in the characterization of structural changes in different regions of the IVD and may simplify comparisons across the field. This collection of human IVD histological images highlights how IVD degeneration is not a single disease but a composite of multiple processes such as aging, injury, repair, and disease, each of which are unique to the individual.


The Spine Journal | 2017

Accumulation and localization of macrophage phenotypes with human intervertebral disc degeneration.

Kenneth R. Nakazawa; Benjamin A. Walter; Damien M. Laudier; Divya Krishnamoorthy; Grace E. Mosley; Kara L. Spiller; James C. Iatridis

BACKGROUND CONTEXT Chronic inflammation is an important component of intervertebral disc (IVD) degeneration, but there is limited knowledge about the identity and source of inflammatory cells involved with the degenerative processes. Macrophages can exhibit multiple phenotypes and are known inflammatory regulators in many tissues, but their phenotypes have not been characterized in IVD degeneration. PURPOSE We aimed to characterize accumulation and localization of macrophages in IVD degeneration. STUDY DESIGN/SETTING This is an exploratory study to characterize macrophage phenotypes in human cadaver IVDs and the effects of injury and degeneration using multiple immunohistochemistry methods. OUTCOME MEASURES Percent positivity of immunohistochemical markers specific for CCR7, CD163, and CD206, and qualitative assessments of dual immunofluorescence and immunostaining localization were the outcome measures. METHODS Macrophages were identified in human cadaveric IVDs with immunohistochemistry using cell surface markers CCR7, CD163, and CD206, which are associated with proinflammatory M1, remodeling M2c, and anti-inflammatory M2a phenotypes, respectively. Variations in the accumulation and localization of macrophage markers with degenerative grade across subjects and within donors are described. RESULTS Cells expressing all three macrophage markers were found in all degenerative IVDs, but not in the healthiest IVDs. Cells expressing CCR7 and CD163, but not CD206, significantly increased with degenerative grade. Many cells also co-expressed multiple macrophage markers. Across all degenerative grades, CCR7+ and CD163+ were significantly more present in unhealthy nucleus pulposus (NP), annulus fibrosus (AF), and end plate (EP) regions exhibiting structural irregularities and defects. Positively stained cells in the NP and AF closely resembled resident IVD cells, suggesting that IVD cells can express macrophage cell surface markers. In the EP, there were increasing trends of positively stained cells with atypical morphology and distribution, suggesting a source for exogenous macrophage infiltration into the IVD. CONCLUSIONS Chronic inflammatory conditions of IVD degeneration appear to involve macrophages or macrophage-like cells, as expression of multiple macrophage markers increased with degeneration, especially around unhealthy regions with defects and the EP. Knowledge of macrophage phenotypes and their localization better elucidates the complex injury and repair processes in IVDs and may eventually lead to novel treatments.


Journal of Biomechanics | 2016

Do mechanical strain and TNF-α interact to amplify pro-inflammatory cytokine production in human annulus fibrosus cells?

Morakot Likhitpanichkul; Olivia M. Torre; Jadry Gruen; Benjamin A. Walter; Andrew C. Hecht; James C. Iatridis

During intervertebral disc (IVD) injury and degeneration, annulus fibrosus (AF) cells experience large mechanical strains in a pro-inflammatory milieu. We hypothesized that TNF-α, an initiator of IVD inflammation, modifies AF cell mechanobiology via cytoskeletal changes, and interacts with mechanical strain to enhance pro-inflammatory cytokine production. Human AF cells (N=5, Thompson grades 2-4) were stretched uniaxially on collagen-I coated chambers to 0%, 5% (physiological) or 15% (pathologic) strains at 0.5Hz for 24h under hypoxic conditions with or without TNF-α (10ng/mL). AF cells were treated with anti-TNF-α and anti-IL-6. ELISA assessed IL-1β, IL-6, and IL-8 production and immunocytochemistry measured F-actin, vinculin and α-tubulin in AF cells. TNF-α significantly increased AF cell pro-inflammatory cytokine production compared to basal conditions (IL-1β:2.0±1.4-84.0±77.3, IL-6:10.6±9.9-280.9±214.1, IL-8:23.9±26.0-5125.1±4170.8pg/ml for basal and TNF-α treatment, respectively) as expected, but mechanical strain did not. Pathologic strain in combination with TNF-α increased IL-1β, and IL-8 but not IL-6 production of AF cells. TNF-α treatment altered F-actin and α-tubulin in AF cells, suggestive of altered cytoskeletal stiffness. Anti-TNF-α (infliximab) significantly inhibited pro-inflammatory cytokine production while anti-IL-6 (atlizumab) did not. In conclusion, TNF-α altered AF cell mechanobiology with cytoskeletal remodeling that potentially sensitized AF cells to mechanical strain and increased TNF-α-induced pro-inflammatory cytokine production. Results suggest an interaction between TNF-α and mechanical strain and future mechanistic studies are required to validate these observations.


The Spine Journal | 2014

Detrimental effects of discectomy on intervertebral disc biology can be decelerated by growth factor treatment during surgery: a large animal organ culture model

Svenja Illien-Jünger; Young Lu; Devina Purmessur; Jillian E. Mayer; Benjamin A. Walter; Peter J. Roughley; Sheeraz A. Qureshi; Andrew C. Hecht; James C. Iatridis

BACKGROUND CONTEXT Lumbar discectomies are common surgical interventions that treat radiculopathy by removing herniated and loose intervertebral disc (IVD) tissues. However, remaining IVD tissue can continue to degenerate resulting in long-term clinical problems. Little information is available on the effects of discectomy on IVD biology. Currently, no treatments exist that can suspend or reverse the degeneration of the remaining IVD. PURPOSE To improve the knowledge on how discectomy procedures influence IVD physiology and to assess the potential of growth factor treatment as an augmentation during surgery. STUDY DESIGN To determine effects of discectomy on IVDs with and without transforming growth factor beta 3 (TGFβ3) augmentation using bovine IVD organ culture. METHODS This study determined effects of discectomy with and without TGFβ3 injection using 1-, 6-, and 19-day organ culture experiments. Treated IVDs were injected with 0.2 μg TGFβ3 in 20 μL phosphate-buffered saline+bovine serum albumin into several locations of the discectomy site. Cell viability, gene expression, nitric oxide (NO) release, IVD height, aggrecan degradation, and proteoglycan content were determined. RESULTS Discectomy significantly increased cell death, aggrecan degradation, and NO release in healthy IVDs. Transforming growth factor beta 3 injection treatment prevented or mitigated these effects for the 19-day culture period. CONCLUSIONS Discectomy procedures induced cell death, catabolism, and NO production in healthy IVDs, and we conclude that post-discectomy degeneration is likely to be associated with cell death and matrix degradation. Transforming growth factor beta 3 injection augmented discectomy procedures by acting to protect IVD tissues by maintaining cell viability, limiting matrix degradation, and suppressing NO. We conclude that discectomy procedures can be improved with injectable therapies at the time of surgery although further in vivo and human studies are required.

Collaboration


Dive into the Benjamin A. Walter's collaboration.

Top Co-Authors

Avatar

James C. Iatridis

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Andrew C. Hecht

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Devina Purmessur

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Svenja Illien-Jünger

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Damien M. Laudier

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Morakot Likhitpanichkul

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Peter J. Roughley

Shriners Hospitals for Children

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge