Benjamin Aminof
Vienna University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Benjamin Aminof.
international conference on concurrency theory | 2014
Benjamin Aminof; Tomer Kotek; Sasha Rubin; Francesco Spegni; Helmut Veith
A standard technique for solving the parameterized model checking problem is to reduce it to the classic model checking problem of finitely many finite-state systems. This work considers some of the theoretical power and limitations of this technique. We focus on concurrent systems in which processes communicate via pairwise rendezvous, as well as the special cases of disjunctive guards and token passing; specifications are expressed in indexed temporal logic without the next operator; and the underlying network topologies are generated by suitable Monadic Second Order Logic formulas and graph operations. First, we settle the exact computational complexity of the parameterized model checking problem for some of our concurrent systems, and establish new decidability results for others. Second, we consider the cases that model checking the parameterized system can be reduced to model checking some fixed number of processes, the number is known as a cutoff. We provide many cases for when such cutoffs can be computed, establish lower bounds on the size of such cutoffs, and identify cases where no cutoff exists. Third, we consider cases for which the parameterized system is equivalent to a single finite-state system (more precisely a Buchi word automaton), and establish tight bounds on the sizes of such automata.
pacific rim international conference on multi-agents | 2015
Benjamin Aminof; Aniello Murano; Sasha Rubin; Florian Zuleger
This paper establishes a framework based on logic and automata theory in which to model and automatically verify that multiple mobile robots, with sensing abilities, moving asynchronously, correctly perform their tasks. The motivation is from practical scenarios in which the environment is not completely know to the robots, e.g., physical robots exploring a maze, or software agents exploring a hostile network. The framework shows how to express tasks in a logical language, and exhibits an algorithm solving the parameterised verification problem, where the graphs are treated as the parameter. The main assumption that yields decidability is that the robots take a bounded number of turns. We prove that dropping this assumption results in undecidability, even for robots with very limited (“local”) sensing abilities.
Theoretical Computer Science | 2013
Benjamin Aminof; Orna Kupferman; Robby Lampert
A nondeterministic weighted finite automaton (WFA) maps an input word to a numerical value. Applications of weighted automata include formal verification of quantitative properties, as well as text, speech, and image processing. Many of these applications require the WFAs to be deterministic, or work substantially better when the WFAs are deterministic. Unlike NFAs, which can always be determinized, not all WFAs have an equivalent deterministic weighted automaton (DWFA). In Mohri (1997) 22, Mohri describes a determinization construction for a subclass of WFA. He also describes a property of WFAs (the twins property), such that all WFAs that satisfy the twins property are determinizable and the algorithm terminates on them. Unfortunately, many natural WFAs cannot be determinized.In this paper we study approximated determinization of WFAs. We describe an algorithm that, given a WFA A and an approximation factor t?1, constructs a DWFA A? that t-determinizes A. Formally, for all words w???, the value of w in A? is at least its value in A and at most t times its value in A. Our construction involves two new ideas: attributing states in the subset construction by both upper and lower residues, and collapsing attributed subsets whose residues can be tightened. The larger the approximation factor is, the more attributed subsets we can collapse. Thus, t-determinization is helpful not only for WFAs that cannot be determinized, but also in cases determinization is possible but results in automata that are too big to handle. We also describe a property (the t-twins property) and use it in order to characterize t-determinizable WFAs. Finally, we describe a polynomial algorithm for deciding whether a given WFA has the t-twins property.
international conference on logic programming | 2005
Benjamin Aminof; Thomas Ball; Orna Kupferman
Formal verification methods model systems by Kripke structures. In order to model live behaviors of systems, Kripke structures are augmented with fairness conditions. Such conditions partition the computations of the systems into fair computations, with respect to which verification proceeds, and unfair computations, which are ignored. Reasoning about Kripke structures augmented with fairness is typically harder than reasoning about non-fair Kripke structures. We consider the transition fairness condition, where a computation π is fair iff each transition that is enabled in π infinitely often is also taken in π infinitely often. Transition fairness is a natural and useful fairness condition. We show that reasoning about Kripke structures augmented with transition fairness is not harder than reasoning about non-fair Kripke structures. We demonstrate it for fair CTL and LTL model checking, and the problem of calculating the dominators and postdominators.
Information & Computation | 2017
Benjamin Aminof; Sasha Rubin
Abstract First-cycle games (FCG) are played on a finite graph by two players who push a token along the edges until a vertex is repeated, and a simple cycle is formed. The winner is determined by some fixed property Y of the sequence of labels of the edges (or nodes) forming this cycle. These games are intimately connected with classic infinite-duration games such as parity and mean-payoff games. We initiate the study of FCGs in their own right, as well as formalise and investigate the connection between FCGs and certain infinite-duration games. We establish that (for efficiently computable Y) the problem of solving FCGs is Pspace -complete; we show that the memory required to win FCGs is, in general, Θ ( n ) ! (where n is the number of nodes in the graph); and we give a full characterisation of those properties Y for which all FCGs are memoryless determined. We formalise the connection between FCGs and certain infinite-duration games and prove that strategies transfer between them. Using the machinery of FCGs, we provide a recipe that can be used to very easily deduce that many infinite-duration games, e.g., mean-payoff, parity, and energy games, are memoryless determined.
formal aspects of component software | 2011
Benjamin Aminof; Fabio Mogavero; Aniello Murano
In automated synthesis, given a specification, we automatically create a system that is guaranteed to satisfy the specification. In the classical temporal synthesis algorithms, one usually creates a “flat” system “from scratch”. However, real-life software and hardware systems are usually created using preexisting libraries of reusable components, and are not “flat” since repeated sub-systems are described only once.
international conference on logic programming | 2015
Benjamin Aminof; Sasha Rubin; Florian Zuleger
We study foundational problems regarding the expressive power of parameterised systems. These infinite-state systems are composed of arbitrarily many finite-state processes that synchronise using a given communication primitive, i.e., broadcast, asynchronous rendezvous, broadcast with message loss, pairwise rendezvous, or disjunctive guards. With each communication primitive we associate the class of parameterised systems that use it. We study the relative expressive power of these classes can systems in one class be simulated by systems in another? and provide a complete picture with only a single question left open. Motivated by the question of separating these classes, we also study the absolute expressive power e.g., is the set of traces of every parameterised system of a given class
international conference on logic programming | 2015
Benjamin Aminof; Aniello Murano; Sasha Rubin
ifip international conference on theoretical computer science | 2008
Benjamin Aminof; Axel Legay; Aniello Murano; Olivier Serre
\omega
international joint conference on automated reasoning | 2016
Benjamin Aminof; Sasha Rubin