Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benjamin C. Hitz is active.

Publication


Featured researches published by Benjamin C. Hitz.


Genome Research | 2012

Annotation of functional variation in personal genomes using RegulomeDB

Alan P. Boyle; Eurie L. Hong; Manoj Hariharan; Yong Cheng; Marc A. Schaub; Maya Kasowski; Konrad J. Karczewski; Julie Park; Benjamin C. Hitz; Shuai Weng; J. Michael Cherry; Michael Snyder

As the sequencing of healthy and disease genomes becomes more commonplace, detailed annotation provides interpretation for individual variation responsible for normal and disease phenotypes. Current approaches focus on direct changes in protein coding genes, particularly nonsynonymous mutations that directly affect the gene product. However, most individual variation occurs outside of genes and, indeed, most markers generated from genome-wide association studies (GWAS) identify variants outside of coding segments. Identification of potential regulatory changes that perturb these sites will lead to a better localization of truly functional variants and interpretation of their effects. We have developed a novel approach and database, RegulomeDB, which guides interpretation of regulatory variants in the human genome. RegulomeDB includes high-throughput, experimental data sets from ENCODE and other sources, as well as computational predictions and manual annotations to identify putative regulatory potential and identify functional variants. These data sources are combined into a powerful tool that scores variants to help separate functional variants from a large pool and provides a small set of putative sites with testable hypotheses as to their function. We demonstrate the applicability of this tool to the annotation of noncoding variants from 69 full sequenced genomes as well as that of a personal genome, where thousands of functionally associated variants were identified. Moreover, we demonstrate a GWAS where the database is able to quickly identify the known associated functional variant and provide a hypothesis as to its function. Overall, we expect this approach and resource to be valuable for the annotation of human genome sequences.


Nucleic Acids Research | 2012

Saccharomyces Genome Database: the genomics resource of budding yeast

J. Michael Cherry; Eurie L. Hong; Craig Amundsen; Rama Balakrishnan; Gail Binkley; Esther T. Chan; Karen R. Christie; Maria C. Costanzo; Selina S. Dwight; Stacia R. Engel; Dianna G. Fisk; Jodi E. Hirschman; Benjamin C. Hitz; Kalpana Karra; Cynthia J. Krieger; Stuart R. Miyasato; Robert S. Nash; Julie Park; Marek S. Skrzypek; Matt Simison; Shuai Weng; Edith D. Wong

The Saccharomyces Genome Database (SGD, http://www.yeastgenome.org) is the community resource for the budding yeast Saccharomyces cerevisiae. The SGD project provides the highest-quality manually curated information from peer-reviewed literature. The experimental results reported in the literature are extracted and integrated within a well-developed database. These data are combined with quality high-throughput results and provided through Locus Summary pages, a powerful query engine and rich genome browser. The acquisition, integration and retrieval of these data allow SGD to facilitate experimental design and analysis by providing an encyclopedia of the yeast genome, its chromosomal features, their functions and interactions. Public access to these data is provided to researchers and educators via web pages designed for optimal ease of use.


Nucleic Acids Research | 2008

The Gene Ontology project in 2008

Midori A. Harris; Jennifer I. Deegan; Amelia Ireland; Jane Lomax; Michael Ashburner; Susan Tweedie; Seth Carbon; Suzanna E. Lewis; Christopher J. Mungall; John Richter; Karen Eilbeck; Judith A. Blake; Alexander D. Diehl; Mary E. Dolan; Harold Drabkin; Janan T. Eppig; David P. Hill; Ni Li; Martin Ringwald; Rama Balakrishnan; Gail Binkley; J. Michael Cherry; Karen R. Christie; Maria C. Costanzo; Qing Dong; Stacia R. Engel; Dianna G. Fisk; Jodi E. Hirschman; Benjamin C. Hitz; Eurie L. Hong

The Gene Ontology (GO) project (http://www.geneontology.org/) provides a set of structured, controlled vocabularies for community use in annotating genes, gene products and sequences (also see http://www.sequenceontology.org/). The ontologies have been extended and refined for several biological areas, and improvements to the structure of the ontologies have been implemented. To improve the quantity and quality of gene product annotations available from its public repository, the GO Consortium has launched a focused effort to provide comprehensive and detailed annotation of orthologous genes across a number of ‘reference’ genomes, including human and several key model organisms. Software developments include two releases of the ontology-editing tool OBO-Edit, and improvements to the AmiGO browser interface.


Nucleic Acids Research | 2007

Gene Ontology annotations at SGD: new data sources and annotation methods

Eurie L. Hong; Rama Balakrishnan; Qing Dong; Karen R. Christie; Julie Park; Gail Binkley; Maria C. Costanzo; Selina S. Dwight; Stacia R. Engel; Dianna G. Fisk; Jodi E. Hirschman; Benjamin C. Hitz; Cynthia J. Krieger; Michael S. Livstone; Stuart R. Miyasato; Robert S. Nash; Rose Oughtred; Marek S. Skrzypek; Shuai Weng; Edith D. Wong; Kathy K. Zhu; Kara Dolinski; David Botstein; J. Michael Cherry

The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org/) collects and organizes biological information about the chromosomal features and gene products of the budding yeast Saccharomyces cerevisiae. Although published data from traditional experimental methods are the primary sources of evidence supporting Gene Ontology (GO) annotations for a gene product, high-throughput experiments and computational predictions can also provide valuable insights in the absence of an extensive body of literature. Therefore, GO annotations available at SGD now include high-throughput data as well as computational predictions provided by the GO Annotation Project (GOA UniProt; http://www.ebi.ac.uk/GOA/). Because the annotation method used to assign GO annotations varies by data source, GO resources at SGD have been modified to distinguish data sources and annotation methods. In addition to providing information for genes that have not been experimentally characterized, GO annotations from independent sources can be compared to those made by SGD to help keep the literature-based GO annotations current.


Cell | 2014

H3K4me3 Breadth Is Linked to Cell Identity and Transcriptional Consistency

Bérénice A. Benayoun; Elizabeth A. Pollina; Duygu Ucar; Salah Mahmoudi; Kalpana Karra; Edith D. Wong; Keerthana Devarajan; Aaron C. Daugherty; Anshul Kundaje; Elena Mancini; Benjamin C. Hitz; Rakhi Gupta; Thomas A. Rando; Julie C. Baker; Michael Snyder; J. Michael Cherry; Anne Brunet

Trimethylation of histone H3 at lysine 4 (H3K4me3) is a chromatin modification known to mark the transcription start sites of active genes. Here, we show that H3K4me3 domains that spread more broadly over genes in a given cell type preferentially mark genes that are essential for the identity and function of that cell type. Using the broadest H3K4me3 domains as a discovery tool in neural progenitor cells, we identify novel regulators of these cells. Machine learning models reveal that the broadest H3K4me3 domains represent a distinct entity, characterized by increased marks of elongation. The broadest H3K4me3 domains also have more paused polymerase at their promoters, suggesting a unique transcriptional output. Indeed, genes marked by the broadest H3K4me3 domains exhibit enhanced transcriptional consistency and [corrected] increased transcriptional levels, and perturbation of H3K4me3 breadth leads to changes in transcriptional consistency. Thus, H3K4me3 breadth contains information that could ensure transcriptional precision at key cell identity/function genes.


G3: Genes, Genomes, Genetics | 2014

The Reference Genome Sequence of Saccharomyces cerevisiae: Then and Now

Stacia R. Engel; Fred S. Dietrich; Dianna G. Fisk; Gail Binkley; Rama Balakrishnan; Maria C. Costanzo; Selina S. Dwight; Benjamin C. Hitz; Kalpana Karra; Robert S. Nash; Shuai Weng; Edith D. Wong; Paul Lloyd; Marek S. Skrzypek; Stuart R. Miyasato; Matt Simison; J. Michael Cherry

The genome of the budding yeast Saccharomyces cerevisiae was the first completely sequenced from a eukaryote. It was released in 1996 as the work of a worldwide effort of hundreds of researchers. In the time since, the yeast genome has been intensively studied by geneticists, molecular biologists, and computational scientists all over the world. Maintenance and annotation of the genome sequence have long been provided by the Saccharomyces Genome Database, one of the original model organism databases. To deepen our understanding of the eukaryotic genome, the S. cerevisiae strain S288C reference genome sequence was updated recently in its first major update since 1996. The new version, called “S288C 2010,” was determined from a single yeast colony using modern sequencing technologies and serves as the anchor for further innovations in yeast genomic science.


Nucleic Acids Research | 2010

Saccharomyces Genome Database provides mutant phenotype data

Stacia R. Engel; Rama Balakrishnan; Gail Binkley; Karen R. Christie; Maria C. Costanzo; Selina S. Dwight; Dianna G. Fisk; Jodi E. Hirschman; Benjamin C. Hitz; Eurie L. Hong; Cynthia J. Krieger; Michael S. Livstone; Stuart R. Miyasato; Robert S. Nash; Rose Oughtred; Julie Park; Marek S. Skrzypek; Shuai Weng; Edith D. Wong; Kara Dolinski; David Botstein; J. Michael Cherry

The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org) is a scientific database for the molecular biology and genetics of the yeast Saccharomyces cerevisiae, which is commonly known as baker’s or budding yeast. The information in SGD includes functional annotations, mapping and sequence information, protein domains and structure, expression data, mutant phenotypes, physical and genetic interactions and the primary literature from which these data are derived. Here we describe how published phenotypes and genetic interaction data are annotated and displayed in SGD.


Database | 2012

YeastMine—an integrated data warehouse for Saccharomyces cerevisiae data as a multipurpose tool-kit

Rama Balakrishnan; Julie Park; Kalpana Karra; Benjamin C. Hitz; Gail Binkley; Eurie L. Hong; Julie Sullivan; Gos Micklem; J. Michael Cherry

The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org/) provides high-quality curated genomic, genetic, and molecular information on the genes and their products of the budding yeast Saccharomyces cerevisiae. To accommodate the increasingly complex, diverse needs of researchers for searching and comparing data, SGD has implemented InterMine (http://www.InterMine.org), an open source data warehouse system with a sophisticated querying interface, to create YeastMine (http://yeastmine.yeastgenome.org). YeastMine is a multifaceted search and retrieval environment that provides access to diverse data types. Searches can be initiated with a list of genes, a list of Gene Ontology terms, or lists of many other data types. The results from queries can be combined for further analysis and saved or downloaded in customizable file formats. Queries themselves can be customized by modifying predefined templates or by creating a new template to access a combination of specific data types. YeastMine offers multiple scenarios in which it can be used such as a powerful search interface, a discovery tool, a curation aid and also a complex database presentation format. Database URL: http://yeastmine.yeastgenome.org


Nucleic Acids Research | 2016

ENCODE data at the ENCODE portal

Cricket A. Sloan; Esther T. Chan; Jean M. Davidson; Venkat S. Malladi; J. Seth Strattan; Benjamin C. Hitz; Idan Gabdank; Aditi K. Narayanan; Marcus Ho; Brian T. Lee; Laurence D. Rowe; Timothy R. Dreszer; Greg Roe; Nikhil R. Podduturi; Forrest Tanaka; Eurie L. Hong; J. Michael Cherry

The Encyclopedia of DNA Elements (ENCODE) Project is in its third phase of creating a comprehensive catalog of functional elements in the human genome. This phase of the project includes an expansion of assays that measure diverse RNA populations, identify proteins that interact with RNA and DNA, probe regions of DNA hypersensitivity, and measure levels of DNA methylation in a wide range of cell and tissue types to identify putative regulatory elements. To date, results for almost 5000 experiments have been released for use by the scientific community. These data are available for searching, visualization and download at the new ENCODE Portal (www.encodeproject.org). The revamped ENCODE Portal provides new ways to browse and search the ENCODE data based on the metadata that describe the assays as well as summaries of the assays that focus on data provenance. In addition, it is a flexible platform that allows integration of genomic data from multiple projects. The portal experience was designed to improve access to ENCODE data by relying on metadata that allow reusability and reproducibility of the experiments.


Nucleic Acids Research | 2007

Expanded protein information at SGD: new pages and proteome browser

Robert S. Nash; Shuai Weng; Benjamin C. Hitz; Rama Balakrishnan; Karen R. Christie; Maria C. Costanzo; Selina S. Dwight; Stacia R. Engel; Dianna G. Fisk; Jodi E. Hirschman; Eurie L. Hong; Michael S. Livstone; Rose Oughtred; Julie Park; Marek S. Skrzypek; Chandra L. Theesfeld; Gail Binkley; Qing Dong; Christopher Lane; Stuart R. Miyasato; Anand Sethuraman; Mark Schroeder; Kara Dolinski; David Botstein; J. Michael Cherry

The recent explosion in protein data generated from both directed small-scale studies and large-scale proteomics efforts has greatly expanded the quantity of available protein information and has prompted the Saccharomyces Genome Database (SGD; ) to enhance the depth and accessibility of protein annotations. In particular, we have expanded ongoing efforts to improve the integration of experimental information and sequence-based predictions and have redesigned the protein information web pages. A key feature of this redesign is the development of a GBrowse-derived interactive Proteome Browser customized to improve the visualization of sequence-based protein information. This Proteome Browser has enabled SGD to unify the display of hidden Markov model (HMM) domains, protein family HMMs, motifs, transmembrane regions, signal peptides, hydropathy plots and profile hits using several popular prediction algorithms. In addition, a physico-chemical properties page has been introduced to provide easy access to basic protein information. Improvements to the layout of the Protein Information page and integration of the Proteome Browser will facilitate the ongoing expansion of sequence-specific experimental information captured in SGD, including post-translational modifications and other user-defined annotations. Finally, SGD continues to improve upon the availability of genetic and physical interaction data in an ongoing collaboration with BioGRID by providing direct access to more than 82 000 manually-curated interactions.

Collaboration


Dive into the Benjamin C. Hitz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge