Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benjamin Davies is active.

Publication


Featured researches published by Benjamin Davies.


Cell | 2013

A polymorphic p53 response element in KIT ligand influences cancer risk and has undergone natural selection.

Jorge Zeron-Medina; Xuting Wang; Emmanouela Repapi; Michelle R. Campbell; Dan Su; Francesc Castro-Giner; Benjamin Davies; Elisabeth F.P. Peterse; Natalia Sacilotto; Graeme J. Walker; Tamara Terzian; Ian Tomlinson; Neil F. Box; Nicolai Meinshausen; Sarah De Val; Douglas A. Bell; Gareth L. Bond

The ability of p53 to regulate transcription is crucial for tumor suppression and implies that inherited polymorphisms in functional p53-binding sites could influence cancer. Here, we identify a polymorphic p53 responsive element and demonstrate its influence on cancer risk using genome-wide data sets of cancer susceptibility loci, genetic variation, p53 occupancy, and p53-binding sites. We uncover a single-nucleotide polymorphism (SNP) in a functional p53-binding site and establish its influence on the ability of p53 to bind to and regulate transcription of the KITLG gene. The SNP resides in KITLG and associates with one of the largest risks identified among cancer genome-wide association studies. We establish that the SNP has undergone positive selection throughout evolution, signifying a selective benefit, but go on to show that similar SNPs are rare in the genome due to negative selection, indicating that polymorphisms in p53-binding sites are primarily detrimental to humans.


PLOS ONE | 2011

A Comparison of Exogenous Promoter Activity at the ROSA26 Locus Using a PhiC31 Integrase Mediated Cassette Exchange Approach in Mouse ES Cells

Chiann-mun Chen; Jon Krohn; Shoumo Bhattacharya; Benjamin Davies

The activities of nine ubiquitous promoters (ROSA26, CAG, CMV, CMVd1, UbC, EF1α, PGK, chicken β-actin and MC1) have been quantified and compared in mouse embryonic stem cells. To avoid the high variation in transgene expression which results from uncontrolled copy number and chromosomal position effects when using random insertion based transgenic approaches, we have adopted a PhiC31 integrase mediated cassette exchange method for the efficient insertion of transgenes at single copy within a defined and well characterized chromosomal position, ROSA26. This has enabled the direct comparison of constructs from within the same genomic context and allows a systematic and quantitative assessment of the strengths of the promoters in comparison with the endogenous ROSA26 promoter. The behavior of these exogenous promoters, when integrated at ROSA26 in both sense and antisense orientations, reveals a large variation in their levels of activity. In addition, a subset of promoters, EF1α, UbC and CAG, show an increased activity in the sense orientation as a consequence of integration. Transient transfection experiments confirmed these observations to reflect integration dependent effects and also revealed significant differences in the behaviour of these promoters when delivered transiently or stably. As well as providing an important reference which will facilitate the choice of an appropriate promoter to achieve the desired level of expression for a specific research question, this study also demonstrates the suitability of the cassette exchange methodology for the robust and reliable expression of multiple variant transgenes in ES cells.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Analysis of Dll4 regulation reveals a combinatorial role for Sox and Notch in arterial development

N Sacilotto; Rui Monteiro; Martin Fritzsche; Philipp Werner Becker; L Sanchez-Del-Campo; Ke Liu; P Pinheiro; Indrika Ratnayaka; Benjamin Davies; Colin R. Goding; R Patient; George Bou-Gharios; S. De Val

The mechanisms by which arterial fate is established and maintained are not clearly understood. Although a number of signaling pathways and transcriptional regulators have been implicated in arterio-venous differentiation, none are essential for arterial formation, and the manner in which widely expressed factors may achieve arterial-specific gene regulation is unclear. Using both mouse and zebrafish models, we demonstrate here that arterial specification is regulated combinatorially by Notch signaling and SoxF transcription factors, via direct transcriptional gene activation. Through the identification and characterization of two arterial endothelial cell-specific gene enhancers for the Notch ligand Delta-like ligand 4 (Dll4), we show that arterial Dll4 expression requires the direct binding of both the RBPJ/Notch intracellular domain and SOXF transcription factors. Specific combinatorial, but not individual, loss of SOXF and RBPJ DNA binding ablates all Dll4 enhancer-transgene expression despite the presence of multiple functional ETS binding sites, as does knockdown of sox7;sox18 in combination with loss of Notch signaling. Furthermore, triple knockdown of sox7, sox18 and rbpj also results in ablation of endogenous dll4 expression. Fascinatingly, this combinatorial ablation leads to a loss of arterial markers and the absence of a detectable dorsal aorta, demonstrating the essential roles of SoxF and Notch, together, in the acquisition of arterial identity.


Nature | 2016

Re-engineering the zinc fingers of PRDM9 reverses hybrid sterility in mice

Benjamin Davies; Edouard Hatton; Nicolas Altemose; Julie G. Hussin; Florencia Pratto; Gang Zhang; Anjali G. Hinch; Daniela Moralli; Daniel Biggs; Rebeca Diaz; Chris Preece; Ran Li; Emmanuelle Bitoun; Kevin Brick; Catherine M. Green; R. Daniel Camerini-Otero; Simon Myers; Peter Donnelly

The DNA-binding protein PRDM9 directs positioning of the double-strand breaks (DSBs) that initiate meiotic recombination in mice and humans. Prdm9 is the only mammalian speciation gene yet identified and is responsible for sterility phenotypes in male hybrids of certain mouse subspecies. To investigate PRDM9 binding and its role in fertility and meiotic recombination, we humanized the DNA-binding domain of PRDM9 in C57BL/6 mice. This change repositions DSB hotspots and completely restores fertility in male hybrids. Here we show that alteration of one Prdm9 allele impacts the behaviour of DSBs controlled by the other allele at chromosome-wide scales. These effects correlate strongly with the degree to which each PRDM9 variant binds both homologues at the DSB sites it controls. Furthermore, higher genome-wide levels of such ‘symmetric’ PRDM9 binding associate with increasing fertility measures, and comparisons of individual hotspots suggest binding symmetry plays a downstream role in the recombination process. These findings reveal that subspecies-specific degradation of PRDM9 binding sites by meiotic drive, which steadily increases asymmetric PRDM9 binding, has impacts beyond simply changing hotspot positions, and strongly support a direct involvement in hybrid infertility. Because such meiotic drive occurs across mammals, PRDM9 may play a wider, yet transient, role in the early stages of speciation.


PLOS ONE | 2013

Site Specific Mutation of the Zic2 Locus by Microinjection of TALEN mRNA in Mouse CD1, C3H and C57BL/6J Oocytes

Benjamin Davies; Graham Davies; Christopher Preece; Rathi Puliyadi; Dorota Szumska; Shoumo Bhattacharya

Transcription Activator-Like Effector Nucleases (TALENs) consist of a nuclease domain fused to a DNA binding domain which is engineered to bind to any genomic sequence. These chimeric enzymes can be used to introduce a double strand break at a specific genomic site which then can become the substrate for error-prone non-homologous end joining (NHEJ), generating mutations at the site of cleavage. In this report we investigate the feasibility of achieving targeted mutagenesis by microinjection of TALEN mRNA within the mouse oocyte. We achieved high rates of mutagenesis of the mouse Zic2 gene in all backgrounds examined including outbred CD1 and inbred C3H and C57BL/6J. Founder mutant Zic2 mice (eight independent alleles, with frameshift and deletion mutations) were created in C3H and C57BL/6J backgrounds. These mice transmitted the mutant alleles to the progeny with 100% efficiency, allowing the creation of inbred lines. Mutant mice display a curly tail phenotype consistent with Zic2 loss-of-function. The efficiency of site-specific germline mutation in the mouse confirm TALEN mediated mutagenesis in the oocyte to be a viable alternative to conventional gene targeting in embryonic stem cells where simple loss-of-function alleles are required. This technology enables allelic series of mutations to be generated quickly and efficiently in diverse genetic backgrounds and will be a valuable approach to rapidly create mutations in mice already bearing one or more mutant alleles at other genetic loci without the need for lengthy backcrossing.


Cell Reports | 2013

A Role for Cytosolic Fumarate Hydratase in Urea Cycle Metabolism and Renal Neoplasia

Julie Adam; Ming Yang; Christina Bauerschmidt; Mitsuhiro Kitagawa; Linda O’Flaherty; Pratheesh Maheswaran; Gizem Özkan; Natasha Sahgal; Dilair Baban; Keiko Kato; Kaori Saito; Keiko Iino; Kaori Igarashi; Michael R.L. Stratford; Christopher W. Pugh; Daniel A. Tennant; Christian Ludwig; Benjamin Davies; Peter J. Ratcliffe; Mona El-Bahrawy; Houman Ashrafian; Tomoyoshi Soga; Patrick J. Pollard

Summary The identification of mutated metabolic enzymes in hereditary cancer syndromes has established a direct link between metabolic dysregulation and cancer. Mutations in the Krebs cycle enzyme, fumarate hydratase (FH), predispose affected individuals to leiomyomas, renal cysts, and cancers, though the respective pathogenic roles of mitochondrial and cytosolic FH isoforms remain undefined. On the basis of comprehensive metabolomic analyses, we demonstrate that FH1-deficient cells and tissues exhibit defects in the urea cycle/arginine metabolism. Remarkably, transgenic re-expression of cytosolic FH ameliorated both renal cyst development and urea cycle defects associated with renal-specific FH1 deletion in mice. Furthermore, acute arginine depletion significantly reduced the viability of FH1-deficient cells in comparison to controls. Our findings highlight the importance of extramitochondrial metabolic pathways in FH-associated oncogenesis and the urea cycle/arginine metabolism as a potential therapeutic target.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Cardiac ferroportin regulates cellular iron homeostasis and is important for cardiac function

Samira Lakhal-Littleton; Magda Wolna; Carolyn A. Carr; Jack J. Miller; Helen Christian; Vicky Ball; Ana Mafalda Santos; Rebeca Diaz; Daniel Biggs; Richard J. Stillion; Philip Holdship; Fiona Larner; Damian J. Tyler; Kieran Clarke; Benjamin Davies; Peter A. Robbins

Significance The iron-exporting protein ferroportin is recognized as central to systemic iron regulation, but its role in tissues other than those involved in iron handling is unknown. This study shows that ferroportin expression in cardiomyocytes is essential to intracellular iron homeostasis and to normal cardiac function. It also demonstrates that the site of iron accumulation in the iron-overloaded heart depends on whether ferroportin is expressed in the cardiomyocytes. It further shows that the functional significance of cardiac iron overload is highly dependent upon the site of iron accumulation. These findings change our understanding of intracellular iron homeostasis and have significant implications for the clinical management of cardiac dysfunction associated with iron imbalance. Iron is essential to the cell. Both iron deficiency and overload impinge negatively on cardiac health. Thus, effective iron homeostasis is important for cardiac function. Ferroportin (FPN), the only known mammalian iron-exporting protein, plays an essential role in iron homeostasis at the systemic level. It increases systemic iron availability by releasing iron from the cells of the duodenum, spleen, and liver, the sites of iron absorption, recycling, and storage respectively. However, FPN is also found in tissues with no known role in systemic iron handling, such as the heart, where its function remains unknown. To explore this function, we generated mice with a cardiomyocyte-specific deletion of Fpn. We show that these animals have severely impaired cardiac function, with a median survival of 22 wk, despite otherwise unaltered systemic iron status. We then compared their phenotype with that of ubiquitous hepcidin knockouts, a recognized model of the iron-loading disease hemochromatosis. The phenotype of the hepcidin knockouts was far milder, with normal survival up to 12 mo, despite far greater iron loading in the hearts. Histological examination demonstrated that, although cardiac iron accumulates within the cardiomyocytes of Fpn knockouts, it accumulates predominantly in other cell types in the hepcidin knockouts. We conclude, first, that cardiomyocyte FPN is essential for intracellular iron homeostasis and, second, that the site of deposition of iron within the heart determines the severity with which it affects cardiac function. Both findings have significant implications for the assessment and treatment of cardiac complications of iron dysregulation.


eLife | 2016

An essential cell-autonomous role for hepcidin in cardiac iron homeostasis

Samira Lakhal-Littleton; Magda Wolna; Yu Jin Chung; Helen Christian; Lisa C. Heather; Marcella Brescia; Vicky Ball; Rebeca Diaz; Ana Mafalda Santos; Daniel Biggs; Kieran Clarke; Benjamin Davies; Peter A. Robbins

Hepcidin is the master regulator of systemic iron homeostasis. Derived primarily from the liver, it inhibits the iron exporter ferroportin in the gut and spleen, the sites of iron absorption and recycling respectively. Recently, we demonstrated that ferroportin is also found in cardiomyocytes, and that its cardiac-specific deletion leads to fatal cardiac iron overload. Hepcidin is also expressed in cardiomyocytes, where its function remains unknown. To define the function of cardiomyocyte hepcidin, we generated mice with cardiomyocyte-specific deletion of hepcidin, or knock-in of hepcidin-resistant ferroportin. We find that while both models maintain normal systemic iron homeostasis, they nonetheless develop fatal contractile and metabolic dysfunction as a consequence of cardiomyocyte iron deficiency. These findings are the first demonstration of a cell-autonomous role for hepcidin in iron homeostasis. They raise the possibility that such function may also be important in other tissues that express both hepcidin and ferroportin, such as the kidney and the brain. DOI: http://dx.doi.org/10.7554/eLife.19804.001


Reproduction | 2007

AKR1B7 (mouse vas deferens protein) is dispensable for mouse development and reproductive success

C Baumann; Benjamin Davies; M Peters; U Kaufmann-Reiche; M Lessl; F Theuring

AKR1B7 (aldo-keto reductase family 1, member 7; also known as mouse vas deferens protein) is a member of the AKR superfamily, and has been suggested to play a role in detoxifying processes on account of its preferred substrates, 4-hydroxynonenal and isocaproaldehyde. High levels of protein expression were found in the vas deferens and the adrenal gland, where sustained expression is dependent on androgen or ACTH respectively. Recently, a remarkable induction of AKR1B7 expression has been reported in the ovary following exogenous injections of LH. In the present study, we confirm this regulation physiologically during the estrous cycle, observing Akr1b7 expression to be restricted to the theca and stromal cells of the proestrus ovary. To further investigate the role of this detoxifying enzyme in both male and female reproduction, we generated knockout mice deficient in AKR1B7. Although AKR1B7 expression in the vas deferens is considerable and tightly regulated in the ovary of wild-type animals, homozygous mutant animals were found to be viable and no reproductive phenotype was observed. Ovarian follicle maturation and spermatozoa parameters remained normal in the absence of this protein. The determination of serum progesterone revealed an increase in hormone concentration in metestrus, while progesterone was found to be decreased in the estrus phase of the cycle in knockout females.


Journal of Tissue Engineering | 2014

Quantitative assessment of barriers to the clinical development and adoption of cellular therapies: A pilot study.

Benjamin Davies; Sarah Rikabi; Anna French; Rafael Pinedo-Villanueva; Mark E. Morrey; K Wartolowska; Andrew Judge; Robert E. MacLaren; Anthony Mathur; David J. Williams; Ivan Wall; Martin A. Birchall; Brock Reeve; Anthony Atala; Richard W. Barker; Zhanfeng Cui; Dominic Furniss; Kim Bure; Evan Y. Snyder; Jeffrey M. Karp; A J Price; Andrew Carr; David Brindley

There has been a large increase in basic science activity in cell therapy and a growing portfolio of cell therapy trials. However, the number of industry products available for widespread clinical use does not match this magnitude of activity. We hypothesize that the paucity of engagement with the clinical community is a key contributor to the lack of commercially successful cell therapy products. To investigate this, we launched a pilot study to survey clinicians from five specialities and to determine what they believe to be the most significant barriers to cellular therapy clinical development and adoption. Our study shows that the main concerns among this group are cost-effectiveness, efficacy, reimbursement, and regulation. Addressing these concerns can best be achieved by ensuring that future clinical trials are conducted to adequately answer the questions of both regulators and the broader clinical community.

Collaboration


Dive into the Benjamin Davies's collaboration.

Top Co-Authors

Avatar

Daniel Biggs

Wellcome Trust Centre for Human Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher Preece

Wellcome Trust Centre for Human Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A J Carr

University of Oxford

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge