Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benjamin E. Gewurz is active.

Publication


Featured researches published by Benjamin E. Gewurz.


Clinical Infectious Diseases | 2008

Persistent and Relapsing Babesiosis in Immunocompromised Patients

Peter J. Krause; Benjamin E. Gewurz; David R. Hill; Francisco M. Marty; Edouard Vannier; Ivo Foppa; Richard R. Furman; Ellen Neuhaus; Gail Skowron; Shaili Gupta; Carlo McCalla; Edward L. Pesanti; Mary Young; Donald Heiman; Gunther Hsue; Jeffrey A. Gelfand; Gary P. Wormser; John Dickason; Frank J. Bia; Barry J. Hartman; Sam R. Telford; Diane Christianson; Kenneth R. Dardick; Morton Coleman; Jennifer E Girotto; Andrew Spielman

BACKGROUND Human babesiosis is a tickborne malaria-like illness that generally resolves without complication after administration of atovaquone and azithromycin or clindamycin and quinine. Although patients experiencing babesiosis that is unresponsive to standard antimicrobial therapy have been described, the pathogenesis, clinical course, and optimal treatment regimen of such cases remain uncertain. METHODS We compared the immunologic status, clinical course, and treatment of 14 case patients who experienced morbidity or death after persistence of Babesia microti infection, despite repeated courses of antibabesial treatment, with those of 46 control subjects whose infection resolved after a single course of standard therapy. This retrospective case-control study was performed in southern New England, New York, and Wisconsin. RESULTS All case patients were immunosuppressed at the time of acute babesiosis, compared with <10% of the control subjects. Most case patients experienced B cell lymphoma and were asplenic or had received rituximab before babesial illness. The case patients were more likely than control subjects to experience complications, and 3 died. Resolution of persistent infection occurred in 11 patients after 2-10 courses of therapy, including administration of a final antimicrobial regimen for at least 2 weeks after babesia were no longer seen on blood smear. CONCLUSIONS Immunocompromised people who are infected by B. microti are at risk of persistent relapsing illness. Such patients generally require antibabesial treatment for >or=6 weeks to achieve cure, including 2 weeks after parasites are no longer detected on blood smear.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Antigen presentation subverted: Structure of the human cytomegalovirus protein US2 bound to the class I molecule HLA-A2

Benjamin E. Gewurz; Rachelle Gaudet; Domenico Tortorella; Evelyn Wang; Hidde L. Ploegh; Don C. Wiley

Many persistent viruses have evolved the ability to subvert MHC class I antigen presentation. Indeed, human cytomegalovirus (HCMV) encodes at least four proteins that down-regulate cell-surface expression of class I. The HCMV unique short (US)2 glycoprotein binds newly synthesized class I molecules within the endoplasmic reticulum (ER) and subsequently targets them for proteasomal degradation. We report the crystal structure of US2 bound to the HLA-A2/Tax peptide complex. US2 associates with HLA-A2 at the junction of the peptide-binding region and the α3 domain, a novel binding surface on class I that allows US2 to bind independently of peptide sequence. Mutation of class I heavy chains confirms the importance of this binding site in vivo. Available data on class I-ER chaperone interactions indicate that chaperones would not impede US2 binding. Unexpectedly, the US2 ER-luminal domain forms an Ig-like fold. A US2 structure-based sequence alignment reveals that seven HCMV proteins, at least three of which function in immune evasion, share the same fold as US2. The structure allows design of further experiments to determine how US2 targets class I molecules for degradation.


Journal of Virology | 2001

Human Cytomegalovirus US2 Endoplasmic Reticulum-Lumenal Domain Dictates Association with Major Histocompatibility Complex Class I in a Locus-Specific Manner

Benjamin E. Gewurz; Evelyn Wang; Domenico Tortorella; Danny J. Schust; Hidde L. Ploegh

ABSTRACT The human cytomegalovirus-encoded US2 glycoprotein targets endoplasmic reticulum-resident major histocompatibility complex (MHC) class I heavy chains for rapid degradation by the proteasome. We demonstrate that the endoplasmic reticulum-lumenal domain of US2 allows tight interaction with class I molecules encoded by the HLA-A locus. Recombinant soluble US2 binds properly folded, peptide-containing recombinant HLA-A2 molecules in a peptide sequence-independent manner, consistent with US2s ability to broadly downregulate class I molecules. The physicochemical properties of the US2/MHC class I complex suggest a 1:1 stoichiometry. These results demonstrate that US2 does not require additional cellular proteins to specifically interact with soluble class I molecules. Binding of US2 does not significantly alter the conformation of class I molecules, as a soluble T-cell receptor can simultaneously recognize class I molecules associated with US2. The lumenal domain of US2 can differentiate between the products of distinct class I loci, as US2 binds several HLA-A locus products while being unable to bind recombinant HLA-B7, HLA-B27, HLA-Cw4, or HLA-E. We did not observe interaction between soluble US2 and either recombinant HLA-DR1 or recombinant HLA-DM. The substrate specificity of US2 may help explain the presence in human cytomegalovirus of multiple strategies for downregulation of MHC class I molecules.


Journal of Virology | 2000

B7 Costimulation Is Critical for Antibody Class Switching and CD8+ Cytotoxic T-Lymphocyte Generation in the Host Response to Vesicular Stomatitis Virus

Alexander J. McAdam; Evan A. Farkash; Benjamin E. Gewurz; Arlene H. Sharpe

ABSTRACT Antibody and cytotoxic T-lymphocyte (CTL) responses have critical roles in eliminating many viral infections. In addition to stimulation of the T-cell receptor, T cells require costimulatory signals to respond optimally. We evaluated the role of B7 costimulatory molecules (B7-1 and B7-2) in the immune response to viral infection using vesicular stomatitis virus (VSV) and mice lacking either B7-1 or B7-2 or both molecules. Mice lacking both B7-1 and B7-2 had essentially no anti-VSV immunoglobulin G1 (IgG1) response, decreased IgG2a responses, and normal IgM responses, while mice lacking either B7-1 or B7-2 had unaltered anti-VSV antibody responses compared to wild-type mice. Depletion of CD4+ cells further reduced the IgG2a response in mice lacking both B7 molecules, suggesting that CD4−cells may supply help for IgG2a in the absence of B7 costimulation. The absence of both B7 molecules profoundly reduced generation of both primary and secondary VSV-specific class I major histocompatibility complex (MHC)-restricted CTL, whereas VSV-specific CTL responses in mice lacking either B7-1 or B7-2 were similar to those of wild-type animals. Class I MHC-restricted CTL in wild-type mice were not dependent on CD4+ cells, suggesting that the failure of CTL in the absence of B7s is due to a lack of B7 costimulation directly to the CD8+ CTL. These data demonstrate that B7-1 and B7-2 have critical, overlapping functions in the antibody and CTL responses to this viral infection.


Cell Reports | 2014

The NF-κB Genomic Landscape in Lymphoblastoid B Cells

Bo Zhao; Luis A. Barrera; Ina Ersing; Bradford Willox; Stefanie C.S. Schmidt; Hannah Greenfeld; Hufeng Zhou; Sarah B. Mollo; Tommy T. Shi; Kaoru Takasaki; Sizun Jiang; Ellen Cahir-McFarland; Manolis Kellis; Martha L. Bulyk; Elliott Kieff; Benjamin E. Gewurz

The nuclear factor κB (NF-κΒ) subunits RelA, RelB, cRel, p50, and p52 are each critical for B cell development and function. To systematically characterize their responses to canonical and noncanonical NF-κB pathway activity, we performed chromatin immunoprecipitation followed by high-throughput DNA sequencing (ChIP-seq) analysis in lymphoblastoid B cell lines (LCLs). We found a complex NF-κB-binding landscape, which did not readily reflect the two NF-κB pathway paradigms. Instead, 10 subunit-binding patterns were observed at promoters and 11 at enhancers. Nearly one-third of NF-κB-binding sites lacked κB motifs and were instead enriched for alternative motifs. The oncogenic forkhead box protein FOXM1 co-occupied nearly half of NF-κB-binding sites and was identified in protein complexes with NF-κB on DNA. FOXM1 knockdown decreased NF-κB target gene expression and ultimately induced apoptosis, highlighting FOXM1 as a synthetic lethal target in B cell malignancy. These studies provide a resource for understanding mechanisms that underlie NF-κB nuclear activity and highlight opportunities for selective NF-κB blockade.


Current Opinion in Immunology | 2001

Virus subversion of immunity: a structural perspective

Benjamin E. Gewurz; Rachelle Gaudet; Domenico Tortorella; Evelyn Wang; Hidde L. Ploegh

Over the past year, we have witnessed the discovery of further virus immuno-evasins--proteins that alter the host immune response. Although many of these factors have been described over the past decade, the structural basis underlying their biology has lagged behind. Structural data have now been obtained for several such proteins. Major advances of the past year include the structures of a viral chemokine-binding protein, of an intact viral regulator of complement activation and of an immuno-evasin with its cellular target.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Genome-wide siRNA screen for mediators of NF-κB activation

Benjamin E. Gewurz; Fadi Towfic; Jessica C. Mar; Nicholas P. Shinners; Kaoru Takasaki; Bo Zhao; Ellen Cahir-McFarland; John Quackenbush; Ramnik J. Xavier; Elliott Kieff

Although canonical NFκB is frequently critical for cell proliferation, survival, or differentiation, NFκB hyperactivation can cause malignant, inflammatory, or autoimmune disorders. Despite intensive study, mammalian NFκB pathway loss-of-function RNAi analyses have been limited to specific protein classes. We therefore undertook a human genome-wide siRNA screen for novel NFκB activation pathway components. Using an Epstein Barr virus latent membrane protein (LMP1) mutant, the transcriptional effects of which are canonical NFκB-dependent, we identified 155 proteins significantly and substantially important for NFκB activation in HEK293 cells. These proteins included many kinases, phosphatases, ubiquitin ligases, and deubiquinating enzymes not previously known to be important for NFκB activation. Relevance to other canonical NFκB pathways was extended by finding that 118 of the 155 LMP1 NF-κB activation pathway components were similarly important for IL-1β–, and 79 for TNFα–mediated NFκB activation in the same cells. MAP3K8, PIM3, and six other enzymes were uniquely relevant to LMP1-mediated NFκB activation. Most novel pathway components functioned upstream of IκB kinase complex (IKK) activation. Robust siRNA knockdown effects were confirmed for all mRNAs or proteins tested. Although multiple ZC3H-family proteins negatively regulate NFκB, ZC3H13 and ZC3H18 were activation pathway components. ZC3H13 was critical for LMP1, TNFα, and IL-1β NFκB-dependent transcription, but not for IKK activation, whereas ZC3H18 was critical for IKK activation. Down-modulators of LMP1 mediated NFκB activation were also identified. These experiments identify multiple targets to inhibit or stimulate LMP1-, IL-1β–, or TNFα–mediated canonical NFκB activation.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Epstein–Barr virus nuclear antigen 3C regulated genes in lymphoblastoid cell lines

Bo Zhao; Jessica C. Mar; Seiji Maruo; Sungwook Lee; Benjamin E. Gewurz; Eric Johannsen; Kristina Holton; Renee Rubio; Kenzo Takada; John Quackenbush; Elliott Kieff

EBV nuclear antigen 3C (EBNA3C) is an essential transcription factor for EBV transformed lymphoblast cell line (LCL) growth. To identify EBNA3C-regulated genes in LCLs, microarrays were used to measure RNA abundances in each of three different LCLs that conditionally express EBNA3C fused to a 4-OH-Tamoxifen–dependent estrogen receptor hormone binding domain (EBNA3CHT). At least three RNAs were assayed for each EBNA3CHT LCL under nonpermissive conditions, permissive conditions, and nonpermissive conditions with wild-type EBNA3C transcomplementation. Using a two-way ANOVA model of EBNA3C levels, we identified 550 regulated genes that were at least 1.5-fold up- or down-regulated with false discovery rates < 0.01. EBNA3C-regulated genes overlapped significantly with genes regulated by EBNA2 and EBNA3A consistent with coordinated effects on cell gene transcription. Of the 550 EBNA3C-regulated genes, 106 could be placed in protein networks. A seeded Bayesian network analysis of the 80 most significant EBNA3C-regulated genes suggests that RAC1, LYN, and TNF are upstream of other EBNA3C-regulated genes. Gene set enrichment analysis found enrichment for MAP kinase signaling, cytokine–cytokine receptor interactions, JAK-STAT signaling, and cell adhesion molecules, implicating these pathways in EBNA3C effects on LCL growth or survival. EBNA3C significantly up-regulated the CXCL12 ligand and its CXCR4 receptor and increased LCL migration. CXCL12 up-regulation depended on EBNA3Cs interaction with the cell transcription factor, RBPJ, which is essential for LCL growth. EBNA3C also up-regulated MYC 1.3-fold and down-regulated CDKN2A exons 2 and 3, shared by p16 and p14, 1.4-fold, with false discovery rates < 5 × 10−4.


Proceedings of the National Academy of Sciences of the United States of America | 2008

IRF7 activation by Epstein–Barr virus latent membrane protein 1 requires localization at activation sites and TRAF6, but not TRAF2 or TRAF3

Yoon-Jae Song; Kenneth M. Izumi; Nicholas P. Shinners; Benjamin E. Gewurz; Elliott Kieff

Epstein–Barr virus (EBV) latent infection membrane protein 1 (LMP1), a constitutively aggregated and activated pseudoreceptor, activates IFN regulatory factor 7 (IRF7) through RIP1. We now report that the LMP1 cytoplasmic carboxyl terminal amino acids 379–386 bound IRF7 and activated IRF7. IRF7 activation required TRAF6 and RIP1, but not TRAF2 or TRAF3. LMP1 Y384YD386, which are required for TRADD and RIP1 binding and for NF-κB activation, were not required for IRF7 binding, but were required for IRF7 activation, implicating signaling through TRADD and RIP1 in IRF7 activation. Association with active LMP1 signaling complexes was also critical for IRF7 activation because (i) a dominant-negative IRF7 bound to LMP1, blocked IRF7 association and activation, but did not inhibit LMP1 induced NF-κB or TBK1 or Sendai virus-mediated IFN stimulated response element activation; and (ii) two different LMP1 transmembrane domain mutants, which fail to aggregate, each bound IRF7 and prevented LMP1 from binding and activating IRF7 in the same cell, but did not prevent NF-κB activation. Thus, efficient IRF7 activation required association with LMP1 CTAR2 in proximity to LMP1 CTAR2 mediated kinase activation sites.


PLOS Genetics | 2014

Regulation of p53 and Rb links the alternative NF-κB pathway to EZH2 expression and cell senescence.

Alessio Iannetti; Adeline C. Ledoux; Susan J. Tudhope; Hélène Sellier; Bo Zhao; Sophia Mowla; Adam Moore; Holger Hummerich; Benjamin E. Gewurz; Simon J. Cockell; Parmjit S. Jat; Elaine Willmore; Neil D. Perkins

There are two major pathways leading to induction of NF-κB subunits. The classical (or canonical) pathway typically leads to the induction of RelA or c-Rel containing complexes, and involves the degradation of IκBα in a manner dependent on IκB kinase (IKK) β and the IKK regulatory subunit NEMO. The alternative (or non-canonical) pathway, involves the inducible processing of p100 to p52, leading to the induction of NF-κB2(p52)/RelB containing complexes, and is dependent on IKKα and NF-κB inducing kinase (NIK). Here we demonstrate that in primary human fibroblasts, the alternative NF-κB pathway subunits NF-κB2 and RelB have multiple, but distinct, effects on the expression of key regulators of the cell cycle, reactive oxygen species (ROS) generation and protein stability. Specifically, following siRNA knockdown, quantitative PCR, western blot analyses and chromatin immunoprecipitation (ChIP) show that NF-κB2 regulates the expression of CDK4 and CDK6, while RelB, through the regulation of genes such as PSMA5 and ANAPC1, regulates the stability of p21WAF1 and the tumour suppressor p53. These combine to regulate the activity of the retinoblastoma protein, Rb, leading to induction of polycomb protein EZH2 expression. Moreover, our ChIP analysis demonstrates that EZH2 is also a direct NF-κB target gene. Microarray analysis revealed that in fibroblasts, EZH2 antagonizes a subset of p53 target genes previously associated with the senescent cell phenotype, including DEK and RacGAP1. We show that this pathway provides the major route of crosstalk between the alternative NF-κB pathway and p53, a consequence of which is to suppress cell senescence. Importantly, we find that activation of NF-κB also induces EZH2 expression in CD40L stimulated cells from Chronic Lymphocytic Leukemia patients. We therefore propose that this pathway provides a mechanism through which microenvironment induced NF-κB can inhibit tumor suppressor function and promote tumorigenesis.

Collaboration


Dive into the Benjamin E. Gewurz's collaboration.

Top Co-Authors

Avatar

Bo Zhao

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hufeng Zhou

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Hidde L. Ploegh

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Domenico Tortorella

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Yijie Ma

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Catherine Gerdt

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Kaoru Takasaki

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Stephen J. Trudeau

Brigham and Women's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge