Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benjamin E. P. Dilday is active.

Publication


Featured researches published by Benjamin E. P. Dilday.


Nature | 2011

Supernova SN 2011fe from an exploding carbon–oxygen white dwarf star

Peter E. Nugent; Mark Sullivan; S. Bradley Cenko; R. C. Thomas; Daniel Kasen; D. Andrew Howell; D. F. Bersier; Joshua S. Bloom; S. R. Kulkarni; M. T. Kandrashoff; Alexei V. Filippenko; Jeffrey M. Silverman; Geoffrey W. Marcy; Andrew W. Howard; Howard Isaacson; K. Maguire; Nao Suzuki; James E. Tarlton; Yen Chen Pan; Lars Bildsten; Benjamin J. Fulton; Jerod T. Parrent; David J. Sand; Philipp Podsiadlowski; Federica B. Bianco; Benjamin E. P. Dilday; Melissa Lynn Graham; J. D. Lyman; P. A. James; Mansi M. Kasliwal

Type Ia supernovae have been used empirically as ‘standard candles’ to demonstrate the acceleration of the expansion of the Universe even though fundamental details, such as the nature of their progenitor systems and how the stars explode, remain a mystery. There is consensus that a white dwarf star explodes after accreting matter in a binary system, but the secondary body could be anything from a main-sequence star to a red giant, or even another white dwarf. This uncertainty stems from the fact that no recent type Ia supernova has been discovered close enough to Earth to detect the stars before explosion. Here we report early observations of supernova SN 2011fe in the galaxy M101 at a distance from Earth of 6.4 megaparsecs. We find that the exploding star was probably a carbon–oxygen white dwarf, and from the lack of an early shock we conclude that the companion was probably a main-sequence star. Early spectroscopy shows high-velocity oxygen that slows rapidly, on a timescale of hours, and extensive mixing of newly synthesized intermediate-mass elements in the outermost layers of the supernova. A companion paper uses pre-explosion images to rule out luminous red giants and most helium stars as companions to the progenitor.


Science | 2012

Ptf 11kx: A type ia supernova with a symbiotic nova progenitor

Benjamin E. P. Dilday; D. A. Howell; S. B. Cenko; Jeffrey M. Silverman; Peter E. Nugent; Sagi Ben-Ami; Lars Bildsten; M. Bolte; Michael Endl; A. V. Filippenko; Orly Gnat; Assaf Horesh; E. Y. Hsiao; Mansi M. Kasliwal; David Kirkman; K. Maguire; G. W. Marcy; K. Moore; Y.-C. Pan; Jerod T. Parrent; Philipp Podsiadlowski; Robert Michael Quimby; Assaf Sternberg; Nao Suzuki; D. R. Tytler; Dong Xu; J. S. Bloom; Avishay Gal-Yam; I. M. Hook; S. R. Kulkarni

Stellar Explosions Stars that are born with masses greater than eight times that of the Sun end their lives in luminous explosions known as supernovae. Over the past decade, access to improved sky surveys has revealed rare types of supernovae that are much more luminous than any of those that were known before. Gal-Yam (p. 927) reviews these superluminous events and groups them into three classes that share common observational and physical characteristics. Gamma-ray bursts are another type of extreme explosive events related to the death of massive stars, which occur once per day somewhere in the universe and produce short-lived bursts of gamma-ray light. Gehrels and Mészáros (p. 932) review what has been learned about these events since the launch of NASAs Swift (2004) and Fermi (2008) satellites. The current interpretation is that gamma-ray bursts are related to the formation of black holes. Type Ia supernovae are used as cosmological distance indicators. They are thought to be the result of the thermonuclear explosion of white dwarf stars in binary systems, but the nature of the stellar companion to the white dwarf is still debated. Dilday et al. (p. 942) report high-resolution spectroscopy of the supernova PTF 11kx, which was detected on 26 January 2011 by the Palomar Transient Factory survey. The data suggest a red giant star companion whose material got transferred to the white dwarf. Spectroscopic data imply that a stellar explosion arose from a binary consisting of a white dwarf and a red giant star. There is a consensus that type Ia supernovae (SNe Ia) arise from the thermonuclear explosion of white dwarf stars that accrete matter from a binary companion. However, direct observation of SN Ia progenitors is lacking, and the precise nature of the binary companion remains uncertain. A temporal series of high-resolution optical spectra of the SN Ia PTF 11kx reveals a complex circumstellar environment that provides an unprecedentedly detailed view of the progenitor system. Multiple shells of circumstellar material are detected, and the SN ejecta are seen to interact with circumstellar material starting 59 days after the explosion. These features are best described by a symbiotic nova progenitor, similar to RS Ophiuchi.


Publications of the Astronomical Society of the Pacific | 2009

SNANA: A Public Software Package for Supernova Analysis

Richard Kessler; Joseph P. Bernstein; D. Cinabro; Benjamin E. P. Dilday; Joshua A. Frieman; Saurabh W. Jha; Stephen Kuhlmann; Gajus A. Miknaitis; Masao Sako; Matthew A. Taylor; Jake Vanderplas

We describe a general analysis package for supernova (SN) light curves, called SNANA, that contains a simulation, a light-curve fitter, and a cosmology fitter. The software is designed with the primary goal of using SNe Ia as distance indicators for the determination of cosmological parameters, but it can also be used to study efficiencies for analyses of SN rates, estimate contamination from non-Ia SNe, and optimize future surveys. Several SN models are available within the same software architecture, allowing technical features such as K-corrections to be consistently used among multiple models, and thus making it easier to make detailed comparisons between models. New and improved light-curve models can be easily added. The software works with arbitrary surveys and telescopes and has already been used by several collaborations, leading to more robust and easy-to-use code. This software is not intended as a final product release, but rather it is designed to undergo continual improvements from the community as more is learned about SNe. We give an overview of the SNANA capabilities, as well as some of its limitations.


The Astrophysical Journal | 2008

A Measurement of the Rate of Type Ia Supernovae at Redshift z ≈ 0.1 from the First Season of the SDSS-II Supernova Survey

Benjamin E. P. Dilday; Richard Kessler; Joshua A. Frieman; Jon A. Holtzman; John P. Marriner; Gajus A. Miknaitis; Robert C. Nichol; Roger W. Romani; M. Sako; Bruce A. Bassett; Andrew Cameron Becker; D. Cinabro; F. DeJongh; D. L. DePoy; Mamoru Doi; Peter Marcus Garnavich; Craig J. Hogan; Saurabh W. Jha; Kohki Konishi; Hubert Lampeitl; J. L. Marshall; David P. McGinnis; Jose Luis Palacio Prieto; Adam G. Riess; Michael W. Richmond; Donald P. Schneider; Mathew Smith; Naohiro Takanashi; Kouichi Tokita; Kurt van der Heyden

We present a measurement of the rate of Type Ia supernovae (SNe Ia) from the first of three seasons of data from the SDSS-II Supernova Survey. For this measurement, we include 17 SNe Ia at redshift z ≤ 0.12. Assuming a flat cosmology with Ωm = 0.3 = 1 − ΩΛ, we find a volumetric SN Ia rate of [ 2.93+ 0.17−0.04(systematic)+ 0.90−0.71(statistical) ] × 10−5 SNe Mpc −3 h370 yr −1, at a volume-weighted mean redshift of 0.09. This result is consistent with previous measurements of the SN Ia rate in a similar redshift range. The systematic errors are well controlled, resulting in the most precise measurement of the SN Ia rate in this redshift range. We use a maximum likelihood method to fit SN rate models to the SDSS-II Supernova Survey data in combination with other rate measurements, thereby constraining models for the redshift evolution of the SN Ia rate. Fitting the combined data to a simple power-law evolution of the volumetric SN Ia rate, rV ∝ (1 + z)β, we obtain a value of β = 1.5 ± 0.6, i.e., the SN Ia rate is determined to be an increasing function of redshift at the ~2.5 σ level. Fitting the results to a model in which the volumetric SN rate is rV = Aρ(t) + B(t), where ρ (t) is the stellar mass density and (t) is the star formation rate, we find A = (2.8 ± 1.2) × 10−14 SNe M−1☉ yr −1, B = (9.3+ 3.4−3.1) × 10−4 SNe M−1☉.


Monthly Notices of the Royal Astronomical Society | 2012

Hubble Space Telescope studies of low-redshift type Ia supernovae: evolution with redshift and ultraviolet spectral trends

K. Maguire; Richard S. Ellis; Peter E. Nugent; D. A. Howell; Avishay Gal-Yam; Jeff Cooke; Paolo A. Mazzali; Y.-C. Pan; Benjamin E. P. Dilday; R. C. Thomas; Iair Arcavi; Sagi Ben-Ami; D. F. Bersier; Federica B. Bianco; Benjamin J. Fulton; I. M. Hook; Assaf Horesh; E. Y. Hsiao; P. A. James; Philipp Podsiadlowski; Emma S. Walker; Ofer Yaron; Mansi M. Kasliwal; Russ R. Laher; Nicholas M. Law; Eran O. Ofek; Dovi Poznanski; Jason A. Surace

We present an analysis of the maximum light, near-ultraviolet (NUV; 2900 < λ < 5500 A) spectra of 32 low-redshift (0.001 < z < 0.08) Type Ia supernovae (SNe Ia), obtained with the Hubble Space Telescope (HST) using the Space Telescope Imaging Spectrograph. We combine this spectroscopic sample with high-quality gri light curves obtained with robotic telescopes to measure SN Ia photometric parameters, such as stretch (light-curve width), optical colour and brightness (Hubble residual). By comparing our new data to a comparable sample of SNe Ia at intermediate redshift (0.4 < z < 0.9), we detect modest spectral evolution (3σ), in the sense that our mean low-redshift NUV spectrum has a depressed flux compared to its intermediate-redshift counterpart. We also see a strongly increased dispersion about the mean with decreasing wavelength, confirming the results of earlier surveys. We show that these trends are consistent with changes in metallicity as predicted by contemporary SN Ia spectral models. We also examine the properties of various NUV spectral diagnostics in the individual SN spectra. We find a general correlation between SN stretch and the velocity (or position) of many NUV spectral features. In particular, we observe that higher stretch SNe have larger Ca ii H&K velocities, which also correlate with host galaxy stellar mass. This latter trend is probably driven by the well-established correlation between stretch and host galaxy stellar mass. We find no significant trends between UV spectral features and optical colour. Mean spectra constructed according to whether the SN has a positive or negative Hubble residual show very little difference at NUV wavelengths, indicating that the NUV evolution and variation we identify does not directly correlate with Hubble diagram residuals. Our work confirms and strengthens earlier conclusions regarding the complex behaviour of SNe Ia in the NUV spectral region, but suggests the correlations we find are more useful in constraining progenitor models rather than improving the use of SNe Ia as cosmological probes.


Astronomy and Astrophysics | 2012

SN 2006oz: Rise of a super-luminous supernova observed by the SDSS-II SN Survey

G. Leloudas; E. Chatzopoulos; Benjamin E. P. Dilday; J. Gorosabel; Jozsef Vinko; Anna Gallazzi; J. C. Wheeler; Bruce A. Bassett; J. A. Fischer; Joshua A. Frieman; J. P. U. Fynbo; Ariel Goobar; Martin Jelinek; Daniele Malesani; Robert C. Nichol; J. Nordin; Linda Ostman; Masao Sako; Donald P. Schneider; M. Smith; Jesper Sollerman; Maximilian D. Stritzinger; C. C. Thöne; A. de Ugarte Postigo

Context. A new class of super-luminous transients has recently been identified. These objects reach absolute luminosities of M-u < -21, lack hydrogen in their spectra, and are exclusively discovered by non-targeted surveys because they are associated with very faint galaxies. Aims. We aim to contribute to a better understanding of these objects by studying SN 2006oz, a newly-recognized member of this class. Methods. We present multi-color light curves of SN 2006oz from the SDSS-II SN Survey that cover its rise time, as well as an optical spectrum that shows that the explosion occurred at z similar to 0.376. We fitted black-body functions to estimate the temperature and radius evolution of the photosphere and used the parametrized code SYNOW to model the spectrum. We constructed a bolometric light curve and compared it with explosion models. In addition, we conducted a deep search for the host galaxy with the 10 m GTC telescope. Results. The very early light curves show a dip in the g-and r-bands and a possible initial cooling phase in the u-band before rising to maximum light. The bolometric light curve shows a precursor plateau with a duration of 6-10 days in the rest-frame. A lower limit of M-u < -21.5 can be placed on the absolute peak luminosity of the SN, while the rise time is constrained to be at least 29 days. During our observations, the emitting sphere doubled its radius to similar to 2 x 10(15) cm, while the temperature remained hot at similar to 15 000 K. As for other similar SNe, the spectrum is best modeled with elements including O II and Mg II, while we tentatively suggest that Fe III might be present. The host galaxy is detected in gri with 25.74 +/- 0.19, 24.43 +/- 0.06, and 24.14 +/- 0.12, respectively. It is a faint dwarf galaxy with M-g = -16.9. Conclusions. We suggest that the precursor plateau might be related to a recombination wave in a circumstellar medium (CSM) and discuss whether this is a common property of all similar explosions. The subsequent rise can be equally well described by input from a magnetar or by ejecta-CSM interaction, but the models are not well constrained owing to the lack of post-maximum observations, and CSM interaction has difficulties accounting for the precursor plateau self-consistently. Radioactive decay is less likely to be the mechanism that powers the luminosity. The host is a moderately young and star-forming, but not a starburst, galaxy.


Monthly Notices of the Royal Astronomical Society | 2010

First-year Sloan Digital Sky Survey-II supernova results: consistency and constraints with other intermediate-redshift data sets

Hubert Lampeitl; Robert C. Nichol; Hee-Jong Seo; Tommaso Giannantonio; Charles Shapiro; Bruce A. Bassett; Will J. Percival; Tamara M. Davis; Benjamin E. P. Dilday; Joshua A. Frieman; Peter Marcus Garnavich; Masao Sako; M. Smith; Jesper Sollerman; Andrew Cameron Becker; D. Cinabro; A. V. Filippenko; Ryan J. Foley; Craig J. Hogan; Jon A. Holtzman; Saurabh W. Jha; Kohki Konishi; John P. Marriner; Michael W. Richmond; Adam G. Riess; Donald P. Schneider; Maximilian D. Stritzinger; K. J. van der Heyden; Jake Vanderplas; J. C. Wheeler

ABSTRACT We present an analysis of the luminosity distances of Type Ia Supernovae (SNe) from the Sloan Digital Sky Survey-II (SDSS-II) SN Survey in conjunction with other intermediate-redshift (z 97 per cent level from this single data set. We find good agreement between the SN and BAO distance measurements, both consistent with a Λ-dominated cold dark matter cosmology, as demonstrated through an analysis of the distance duality relationship between the luminosity (dL) and angular diameter (dA) distance measures. We then use these data to estimate w within this restricted redshift range (z < 0.4). Our most stringent result comes from the combination of all our intermediate-redshift data (SDSS-II SNe, BAO, ISW and redshift-space distortions), giving w = -0.81+0.16-0.18 (stat) +/- 0.15 (sys) and ΩM = 0.22+0.09-0.08 assuming a flat universe. This value of w and associated errors only change slightly if curvature is allowed to vary, consistent with constraints from the cosmic microwave background. We also consider more limited combinations of the geometrical (SN, BAO) and dynamical (ISW, redshift-space distortions) probes.


The Astrophysical Journal | 2011

Photometric Type Ia Supernova Candidates from the Three-year SDSS-II SN Survey Data

Masao Sako; Bruce A. Bassett; B. Connolly; Benjamin E. P. Dilday; Heather Cambell; Joshua A. Frieman; L. Gladney; Richard Kessler; Hubert Lampeitl; John P. Marriner; R. Miquel; Robert C. Nichol; Donald P. Schneider; Mathew Smith; Jesper Sollerman

We analyze the three-year Sloan Digital Sky Survey II (SDSS-II) Supernova (SN) Survey data and identify a sample of 1070 photometric Type Ia supernova (SN Ia) candidates based on their multiband light curve data. This sample consists of SN candidates with no spectroscopic confirmation, with a subset of 210 candidates having spectroscopic redshifts of their host galaxies measured while the remaining 860 candidates are purely photometric in their identification. We describe a method for estimating the efficiency and purity of photometric SN Ia classification when spectroscopic confirmation of only a limited sample is available, and demonstrate that SN Ia candidates from SDSS-II can be identified photometrically with ~91% efficiency and with a contamination of ~6%. Although this is the largest uniform sample of SN candidates to date for studying photometric identification, we find that a larger spectroscopic sample of contaminating sources is required to obtain a better characterization of the background events. A Hubble diagram using SN candidates with no spectroscopic confirmation, but with host galaxy spectroscopic redshifts, yields a distance modulus dispersion that is only ~20%-40% larger than that of the spectroscopically confirmed SN Ia sample alone with no significant bias. A Hubble diagram with purely photometric classification and redshift-distance measurements, however, exhibits biases that require further investigation for precision cosmology.


The Astrophysical Journal | 2010

Single Or Double Degenerate Progenitors? Searching For Shock Emission In The SDSS-II Type Ia Supernovae

Brian Hayden; Peter Marcus Garnavich; Daniel Kasen; Benjamin E. P. Dilday; Joshua A. Frieman; Saurabh W. Jha; Hubert Lampeitl; Robert C. Nichol; Masao Sako; Donald P. Schneider; Mathew Smith; Jesper Sollerman; J. Craig Wheeler

From the set of nearly 500 spectroscopically confirmed Type Ia supernovae (SNe) and around 10,000 unconfirmed candidates from SDSS-II, we select a subset of 108 confirmed SNe Ia with well-observed early-time light curves to search for signatures from shock interaction of the SN with a companion star. No evidence for shock emission is seen; however, the cadence and photometric noise could hide a weak shock signal. We simulate shocked light curves using SN Ia templates and a simple Gaussian shock model to emulate the noise properties of the SDSS-II sample and estimate the detectability of the shock interaction signal as a function of shock amplitude, shock width, and shock fraction. We find no direct evidence for shock interaction in the rest-frame B-band, but place an upper limit on the shock amplitude at 9% of SN peak flux (MB > - 16.6 mag). If the single degenerate channel dominates type Ia progenitors, this result constrains the companion stars to be less than about 6 M sun on the main sequence and strongly disfavors red giant companions.


The Astrophysical Journal | 2012

The SDSS-II Supernova Survey: Parameterizing the Type Ia Supernova Rate as a Function of Host Galaxy Properties

Mathew Smith; Robert C. Nichol; Benjamin E. P. Dilday; John P. Marriner; Richard Kessler; Bruce A. Bassett; D. Cinabro; Joshua A. Frieman; Peter Marcus Garnavich; Saurabh W. Jha; Hubert Lampeitl; Masao Sako; Donald P. Schneider; Jesper Sollerman

Using data from the Sloan Digital Sky Supernova Survey-II (SDSS-II SN Survey), we measure the rate of Type Ia supernovae (SNe Ia) as a function of galaxy properties at intermediate redshift. A sample of 342 SNe Ia with 0.05 0.15) SNe Ia in highly star-forming galaxies. We consider that the high levels of dust in these systems may be obscuring the reddest and faintest SNe Ia.

Collaboration


Dive into the Benjamin E. P. Dilday's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruce A. Bassett

African Institute for Mathematical Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jon A. Holtzman

New Mexico State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge