Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benjamin Ezraty is active.

Publication


Featured researches published by Benjamin Ezraty.


Biochimica et Biophysica Acta | 2013

Iron/sulfur proteins biogenesis in prokaryotes: formation, regulation and diversity.

Béatrice Roche; Laurent Aussel; Benjamin Ezraty; Pierre Mandin; Béatrice Py; Frédéric Barras

Iron/sulfur centers are key cofactors of proteins intervening in multiple conserved cellular processes, such as gene expression, DNA repair, RNA modification, central metabolism and respiration. Mechanisms allowing Fe/S centers to be assembled, and inserted into polypeptides have attracted much attention in the last decade, both in eukaryotes and prokaryotes. Basic principles and recent advances in our understanding of the prokaryotic Fe/S biogenesis ISC and SUF systems are reviewed in the present communication. Most studies covered stem from investigations in Escherichia coli and Azotobacter vinelandii. Remarkable insights were brought about by complementary structural, spectroscopic, biochemical and genetic studies. Highlights of the recent years include scaffold mediated assembly of Fe/S cluster, A-type carriers mediated delivery of clusters and regulatory control of Fe/S homeostasis via a set of interconnected genetic regulatory circuits. Also, the importance of Fe/S biosynthesis systems in mediating soft metal toxicity was documented. A brief account of the Fe/S biosynthesis systems diversity as present in current databases is given here. Moreover, Fe/S biosynthesis factors have themselves been the object of molecular tailoring during evolution and some examples are discussed here. An effort was made to provide, based on the E. coli system, a general classification associating a given domain with a given function such as to help next search and annotation of genomes. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems.


Science | 2013

Fe-S Cluster Biosynthesis Controls Uptake of Aminoglycosides in a ROS-Less Death Pathway

Benjamin Ezraty; Alexandra Vergnes; Manuel Banzhaf; Yohann Duverger; Allison Huguenot; Ana Rita Brochado; Shu-Yi Su; Leon Espinosa; Laurent Loiseau; Béatrice Py; Athanasios Typas; Frédéric Barras

Unreactive Death A controversial proposal that all bactericidal antibiotics kill by reactive oxygen species (ROS) and not by their primary cell target has recently attracted high-profile refutations. The ROS-death pathway implicated overstimulation of the electron transport in respiratory chains; a malfunction that leads to ROS releasing Fe from Fe-S clusters and causing cell death via Fenton chemistry. Ezraty et al. (p. 1583) show that electron transport chains and Fe-S clusters are key to killing by aminoglycoside antibiotics but not for the reasons envisioned in the ROS theory. Fe-S clusters are essential for killing because they mature the respiratory chains that produce the necessary proton motive force for the energized uptake of aminoglycosides. Consequently, iron chelators protect against aminoglycosides, not because they scavenge the iron from Fenton chemistry, but because they block aminoglycoside uptake. The respiratory chain is required for antibiotic entry to the target cell rather than for its killing. All bactericidal antibiotics were recently proposed to kill by inducing reactive oxygen species (ROS) production, causing destabilization of iron-sulfur (Fe-S) clusters and generating Fenton chemistry. We find that the ROS response is dispensable upon treatment with bactericidal antibiotics. Furthermore, we demonstrate that Fe-S clusters are required for killing only by aminoglycosides. In contrast to cells, using the major Fe-S cluster biosynthesis machinery, ISC, cells using the alternative machinery, SUF, cannot efficiently mature respiratory complexes I and II, resulting in impendence of the proton motive force (PMF), which is required for bactericidal aminoglycoside uptake. Similarly, during iron limitation, cells become intrinsically resistant to aminoglycosides by switching from ISC to SUF and down-regulating both respiratory complexes. We conclude that Fe-S proteins promote aminoglycoside killing by enabling their uptake.


Journal of Bacteriology | 2008

Protein Aggregates: an Aging Factor Involved in Cell Death

Etienne Maisonneuve; Benjamin Ezraty; Sam Dukan

In a previous study, we demonstrated the presence of protein aggregates in an exponentially grown Escherichia coli culture. In light of these observations, protein aggregates could be considered damage to cells that is able to pass from one generation to the next. Based on the assumption that the amount of aggregate protein could represent an aging factor, we monitored this amount in a bacterial culture during senescence. In doing so, we observed (i) a significant increase in the amount of aggregate protein over time, (ii) a proportional relationship between the amount of aggregate protein and the level of dead cells, (iii) a larger amount in dead cells than in culturable cells, (iv) a heterogeneous distribution of different amounts within a homogenous population of culturable cells entering stasis, and (v) that the initial amount of aggregate protein within a culturable population conditioned the death rate of the culture. Together, the results presented in this study suggest that protein aggregates indeed represent one aging factor leading to bacterial cell death.


Journal of Bacteriology | 2005

Methionine Sulfoxide Reduction and Assimilation in Escherichia coli: New Role for the Biotin Sulfoxide Reductase BisC

Benjamin Ezraty; Julia Bos; Frédéric Barras; Laurent Aussel

Methionine ranks among the amino acids most sensitive to oxidation, which converts it to a racemic mixture of methionine-S-sulfoxide (Met-S-SO) and methionine-R-sulfoxide (Met-R-SO). The methionine sulfoxide reductases MsrA and MsrB reduce free and protein-bound MetSO, MsrA being specific for Met-S-SO and MsrB for Met-R-SO. In the present study, we report that an Escherichia coli metB1 auxotroph lacking both msrA and msrB is still able to use either of the two MetSO enantiomers. This indicates that additional methionine sulfoxide reductase activities occur in E. coli. BisC, a poorly characterized biotin sulfoxide reductase, was identified as one of these new methionine sulfoxide reductases. BisC was purified and found to exhibit reductase activity with free Met-S-SO but not with free Met-R-SO as a substrate. Moreover, a metB1 msrA msrB bisC strain of E. coli was unable to use Met-S-SO for growth, but it retained the ability to use Met-R-SO. Mass spectrometric analyses indicated that BisC is unable to reduce protein-bound Met-S-SO. Hence, this study shows that BisC has an essential role in assimilation of oxidized methionines. Moreover, this work provides the first example of an enzyme that reduces free MetSO while having no activity on peptide-bound MetSO residues.


Nature | 2015

Repairing oxidized proteins in the bacterial envelope using respiratory chain electrons

Alexandra Gennaris; Benjamin Ezraty; Camille Henry; Rym Agrebi; Alexandra Vergnes; Emmanuel Oheix; Julia Bos; Pauline Leverrier; Leon Espinosa; Joanna Szewczyk; Didier Vertommen; Olga Iranzo; Jean-François Collet; Frédéric Barras

The reactive species of oxygen and chlorine damage cellular components, potentially leading to cell death. In proteins, the sulfur-containing amino acid methionine is converted to methionine sulfoxide, which can cause a loss of biological activity. To rescue proteins with methionine sulfoxide residues, living cells express methionine sulfoxide reductases (Msrs) in most subcellular compartments, including the cytosol, mitochondria and chloroplasts. Here we report the identification of an enzymatic system, MsrPQ, repairing proteins containing methionine sulfoxide in the bacterial cell envelope, a compartment particularly exposed to the reactive species of oxygen and chlorine generated by the host defence mechanisms. MsrP, a molybdo-enzyme, and MsrQ, a haem-binding membrane protein, are widely conserved throughout Gram-negative bacteria, including major human pathogens. MsrPQ synthesis is induced by hypochlorous acid, a powerful antimicrobial released by neutrophils. Consistently, MsrPQ is essential for the maintenance of envelope integrity under bleach stress, rescuing a wide series of structurally unrelated periplasmic proteins from methionine oxidation, including the primary periplasmic chaperone SurA. For this activity, MsrPQ uses electrons from the respiratory chain, which represents a novel mechanism to import reducing equivalents into the bacterial cell envelope. A remarkable feature of MsrPQ is its capacity to reduce both rectus (R-) and sinister (S-) diastereoisomers of methionine sulfoxide, making this oxidoreductase complex functionally different from previously identified Msrs. The discovery that a large class of bacteria contain a single, non-stereospecific enzymatic complex fully protecting methionine residues from oxidation should prompt a search for similar systems in eukaryotic subcellular oxidizing compartments, including the endoplasmic reticulum.


Nature Reviews Microbiology | 2017

Oxidative stress, protein damage and repair in bacteria

Benjamin Ezraty; Alexandra Gennaris; Frédéric Barras; Jean-François Collet

Oxidative damage can have a devastating effect on the structure and activity of proteins, and may even lead to cell death. The sulfur-containing amino acids cysteine and methionine are particularly susceptible to reactive oxygen species (ROS) and reactive chlorine species (RCS), which can damage proteins. In this Review, we discuss our current understanding of the reducing systems that enable bacteria to repair oxidatively damaged cysteine and methionine residues in the cytoplasm and in the bacterial cell envelope. We highlight the importance of these repair systems in bacterial physiology and virulence, and we discuss several examples of proteins that become activated by oxidation and help bacteria to respond to oxidative stress.


Biochimica et Biophysica Acta | 2013

Reprint of: Iron/sulfur proteins biogenesis in prokaryotes: Formation, regulation and diversity

Béatrice Roche; Laurent Aussel; Benjamin Ezraty; Pierre Mandin; Béatrice Py; Frédéric Barras

Iron/sulfur centers are key cofactors of proteins intervening in multiple conserved cellular processes, such as gene expression, DNA repair, RNA modification, central metabolism and respiration. Mechanisms allowing Fe/S centers to be assembled, and inserted into polypeptides have attracted much attention in the last decade, both in eukaryotes and prokaryotes. Basic principles and recent advances in our understanding of the prokaryotic Fe/S biogenesis ISC and SUF systems are reviewed in the present communication. Most studies covered stem from investigations in Escherichia coli and Azotobacter vinelandii. Remarkable insights were brought about by complementary structural, spectroscopic, biochemical and genetic studies. Highlights of the recent years include scaffold mediated assembly of Fe/S cluster, A-type carriers mediated delivery of clusters and regulatory control of Fe/S homeostasis via a set of interconnected genetic regulatory circuits. Also, the importance of Fe/S biosynthesis systems in mediating soft metal toxicity was documented. A brief account of the Fe/S biosynthesis systems diversity as present in current databases is given here. Moreover, Fe/S biosynthesis factors have themselves been the object of molecular tailoring during evolution and some examples are discussed here. An effort was made to provide, based on the E. coli system, a general classification associating a given domain with a given function such as to help next search and annotation of genomes. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems.


EMBO Reports | 2011

CO2 exacerbates oxygen toxicity

Benjamin Ezraty; Maı̈alène Chabalier; Adrien Ducret; Etienne Maisonneuve; Sam Dukan

Reactive oxygen species (ROS) are harmful because they can oxidize biological macromolecules. We show here that atmospheric CO2 (concentration range studied: 40–1,000 p.p.m.) increases death rates due to H2O2 stress in Escherichia coli in a dose‐specific manner. This effect is correlated with an increase in H2O2‐induced mutagenesis and, as shown by 8‐oxo‐guanine determinations in cells, DNA base oxidation rates. Moreover, the survival of mutants that are sensitive to aerobic conditions (Hpx− dps and recA fur), presumably because of their inability to tolerate ROS, seems to depend on CO2 concentration. Thus, CO2 exacerbates ROS toxicity by increasing oxidative cellular lesions.


International Journal of Medical Microbiology | 2011

Staphylococcus aureus ClpC is involved in protection of carbon-metabolizing enzymes from carbonylation during stationary growth phase

Indranil Chatterjee; Etienne Maisonneuve; Benjamin Ezraty; Sam Dukan

The ability of Staphylococcus aureus to adapt to various conditions of stress is the result of a complex regulatory response. Among them, ClpC, belonging to the Hsp100/Clp ATPase family, seems to play an important role. For instance, we previously demonstrated that a functional clpC deletion resulted in enhanced survival in the late stationary phase (death phase period) compared to the parental S. aureus strain. However, the mechanisms for the enhanced survival of a S. aureus clpC mutant during the death phase period are still elusive. In Escherichia coli, among the factors that might lead to bacterial cell death during stationary phase, the amount of protein aggregates and/or oxidized proteins appears to be of major importance. Thus, in the present study, we have evaluated protein aggregates and carbonylated protein (as a marker of protein oxidation) contents both in the wild type and in an S. aureus clpC mutant during the exponential growth phase and the death phase. Whereas at all time points the tested clpC mutant exhibits the same amount of protein aggregates as the WT strain, the total amount of carbonylated proteins appears to be lower in the clpC mutant. Moreover, we observed that at the entrance of the death phase carbon-metabolizing enzymes [such as the TCA cycle enzymes Mqo2 (malate: quinone oxidoreductase) and FumC/CitG (fumarate hydratase)] albeit not the bulk proteins are carbonylated to a larger extent in the clpC mutant. Reduced activity of the TCA cycle due to specific carbonylation of these proteins will result in a decrease of endogenous oxidative stress which in turn might confer enhanced survival of the clpC mutant during the death phase period thus contributing to bacterial longevity and chronic infection.


Fems Microbiology Reviews | 2016

The ‘liaisons dangereuses’ between iron and antibiotics

Benjamin Ezraty; Frédéric Barras

The decline in the rate of new antibiotic discovery is of growing concern, and new antibacterial strategies must now be explored. This review brings together research in two fields (metals in biology and antibiotics) in the hope that collaboration between scientists working in these two areas will lead to major advances in understanding and the development of new approaches to tackling microbial pathogens. Metals have been used as antiseptics for centuries. In this review, we focus on iron, an essential trace element that can nevertheless be toxic to bacteria. We review the many situations in which iron and antibiotics have combinatorial effects when used together. Understanding the molecular relationships between iron and antibiotics, from pure chemistry to gene reprogramming via biochemical competition, is important not only to increase basic knowledge, but also for the development of treatments against pathogens, with a view to optimizing antibiotic efficacy.

Collaboration


Dive into the Benjamin Ezraty's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laurent Aussel

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

Béatrice Py

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Pierre Mandin

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

Sam Dukan

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexandra Gennaris

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Jean-François Collet

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge