Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benjamin Goldschmidt is active.

Publication


Featured researches published by Benjamin Goldschmidt.


Physics in Medicine and Biology | 2014

MR compatibility aspects of a silicon photomultiplier-based PET/RF insert with integrated digitisation

Bjoern Weissler; Pierre Gebhardt; Christoph Lerche; Jakob Wehner; Torsten Solf; Benjamin Goldschmidt; Jane E. Mackewn; Paul Marsden; Fabian Kiessling; Michael Perkuhn; Dirk Heberling; Volkmar Schulz

The combination of Positron Emission Tomography (PET) and Magnetic Resonance Imaging (MRI) into a single device is being considered a promising tool for molecular imaging as it combines the high sensitivity of PET with the functional and anatomical images of MRI. For highest performance, a scalable, MR compatible detector architecture with a small form factor is needed, targeting at excellent PET signal-to-noise ratios and time-of-flight information. Therefore it is desirable to use silicon photo multipliers and to digitize their signals directly in the detector modules inside the MRI bore. A preclinical PET/RF insert for clinical MRI scanner was built to demonstrate a new architecture and to study the interactions between the two modalities.The disturbance of the MRIs static magnetic field stays below 2 ppm peak-to-peak within a diameter of 56 mm (90 mm using standard automatic volume shimming). MRI SNR is decreased by 14%, RF artefacts (dotted lines) are only visible in sequences with very low SNR. Ghosting artefacts are visible to the eye in about 26% of the EPI images, severe ghosting only in 7.6%. Eddy-current related heating effects during long EPI sequences are noticeable but with low influence of 2% on the coincidences count rate. The time resolution of 2.5 ns, the energy resolution of 29.7% and the volumetric spatial resolution of 1.8 mm(3) in the PET isocentre stay unaffected during MRI operation. Phantom studies show no signs of other artefacts or distortion in both modalities. A living rat was simultaneously imaged after the injection with (18)F-Fluorodeoxyglucose (FDG) proving the in vivo capabilities of the system.


Physics in Medicine and Biology | 2015

MR-compatibility assessment of the first preclinical PET-MRI insert equipped with digital silicon photomultipliers

Jakob Wehner; Bjoern Weissler; Peter Michael Dueppenbecker; Pierre Gebhardt; Benjamin Goldschmidt; David Schug; Fabian Kiessling; Volkmar Schulz

PET (positron emission tomography) with its high sensitivity in combination with MRI (magnetic resonance imaging) providing anatomic information with good soft-tissue contrast is considered to be a promising hybrid imaging modality. However, the integration of a PET detector into an MRI system is a challenging task since the MRI system is a sensitive device for external disturbances and provides a harsh environment for electronic devices. Consequently, the PET detector has to be transparent for the MRI system and insensitive to electromagnetic disturbances. Due to the variety of MRI protocols imposing a wide range of requirements regarding the MR-compatibility, an extensive study is mandatory to reliably assess worst-case interference phenomena between the PET detector and the MRI scanner. We have built the first preclinical PET insert, designed for a clinical 3 T MRI, using digital silicon photomultipliers (digital SiPM, type DPC 3200-22, Philips Digital Photon Counting). Since no thorough interference investigation with this new digital sensor has been reported so far, we present in this work such a comprehensive MR-compatibility study. Acceptable distortion of the B0 field homogeneity (volume RMS = 0.08 ppm, peak-to-peak value = 0.71 ppm) has been found for the PET detector installed. The signal-to-noise ratio degradation stays between 2-15% for activities up to 21 MBq. Ghosting artifacts were only found for demanding EPI (echo planar imaging) sequences with read-out gradients in Z direction caused by additional eddy currents originated from the PET detector. On the PET side, interference mainly between the gradient system and the PET detector occurred: extreme gradient tests were executed using synthetic sequences with triangular pulse shape and maximum slew rate. Under this condition, a relative degradation of the energy (⩽10%) and timing (⩽15%) resolution was noticed. However, barely measurable performance deterioration occurred when morphological MRI protocols are conducted certifying that the overall PET performance parameters remain unharmed.


ieee nuclear science symposium | 2011

SiPM based preclinical PET/MR insert for a human 3T MR: first imaging experiments

Volkmar Schulz; Bjoern Weissler; Pierre Gebhardt; Torsten Solf; Christoph Lerche; Peter Fischer; Michael Ritzert; Viacheslav Mlotok; C. Piemonte; Benjamin Goldschmidt; Stefaan Vandenberghe; Andre Salomon; Tobias Schaeffter; Paul Marsden

Simultaneous PET/MRI is a hybrid imaging modality which promises to play an important role in the field of molecular imaging, as it combines the outstanding soft-tissue contrast of MRI with the metabolic and functional information of PET and MRI. In addition, the possibility for true simultaneous acquisition allows for improved 4D registration which in due course may lead to enhanced image quality and image quantification. The main technical challenges of simultaneous PET/MR are the MR-based attenuation correction and the development of an MR-compatible PET detector technology. Avalanche photo diode based detectors have been already successfully integrated into preclinical as well as human systems [1,2]. Low but noticeable interferences between PET and MRI have been reported so far. Unfortunately, these implementations do not offer the measurement of time of flight (TOF) information in the sub-ns range, which is one of the drivers for high quality clinical PET and has been state-of-the-art in clinical PET/CT for the last 5 years.


IEEE Transactions on Nuclear Science | 2013

Towards Software-Based Real-Time Singles and Coincidence Processing of Digital PET Detector Raw Data

Benjamin Goldschmidt; Christoph Lerche; Torsten Solf; Andre Salomon; Fabian Kiessling; Volkmar Schulz

This paper presents a software-based singles and coincidence processing (SCP) architecture for a digital PET/MR system that is based on SiPM detectors with local digitization coupled to preclinical crystal arrays. Compared with traditional PET systems, our system outputs detector raw data of the individual detector elements via optical Gigabit Ethernet interfaces instead of singles or coincidences. The raw data contains the digitized timestamps, energies, and identifiers of triggered SiPM pixels (hits). Although this approach requires a high bandwidth for the detector data transmission system, the availability of detector raw data offers unique opportunities to employ more accurate and computationally complex, iterative algorithms, which can lead to PET images with higher quality and accuracy. In this paper, we evaluate a parallel software-based SCP for three different crystal position estimation approaches with regard to its real-time capabilities. The SCP receives detector raw data as input and outputs list-mode coincidence data. The investigated PET system features ten singles processing units (SPU), each equipped with two PET detector stacks and a Gigabit Ethernet interface to a data acquisition and processing server (Dell Poweredge R910 equipped with 4× Intel Xeon [email protected] GHz CPUs and 256 GByte DDR3-RAM), allowing lossless real-time acquisition of the entire raw data stream. Using the detector raw data of three previously stored measurements, our results show that the throughput (in Mhits/s) of a center-of-gravity (COG)-based parallel SCP is nearly 4× higher on average than the estimated detector raw data output that is generated from an activity of 37 MBq in the iso-center of the detector ring. Under the same conditions, an iterative maximum-likelihood (ML)-based parallel SCP leads to a 6× higher throughput on average, while a Gaussian-based parallel SCP also results in a 13× higher throughput on average. Compared with a serial processing approach, the parallel implementations show speedups of up to 38× on average for the ML-based, 39× on average for Gaussian-based, and up to 34× on average for the COG-based parallelized SCP for the three previously-stored measurements.


IEEE Transactions on Medical Imaging | 2012

A Self-Normalization Reconstruction Technique for PET Scans Using the Positron Emission Data

Andre Salomon; Benjamin Goldschmidt; René M. Botnar; Fabian Kiessling; Volkmar Schulz

Positron emission tomography (PET) image quality in both clinical and preclinical environments highly depends on an accurate knowledge of the detector hardware to correct for image quality degrading effects like gain, temperature, and photon detection efficiency variations of the individual crystals. In conventional PET systems some of these variations are typically corrected using a dedicated calibration scan in which the scanner performance for a well-known activity source is measured. We propose an alternative method for estimating the relative sensitivity of each detector pixel using the coincidences as well as the singles emission data of each PET scan. The overall idea is to compare the total sum of all measured single photons before coincidence processing in each crystal with a steadily low-frequent distribution that can normally be expected. Both the estimated activity and the estimated detector sensitivity are simultaneously improved by using an extended iterative reconstruction scheme. This way we ensure the use of an optimal calibration correction (with the exception of a global factor) for each data set, even if the scanner performance has changed between two scans. Data measured with a preclinical PET scanner (HYPERIon-I) which uses analog silicon photomultipliers in combination with a custom-made ASIC shows a significant increase of image quality and homogeneity using the proposed method.


Physics in Medicine and Biology | 2015

PET performance and MRI compatibility evaluation of a digital, ToF-capable PET/MRI insert equipped with clinical scintillators.

David Schug; Jakob Wehner; Peter Michael Dueppenbecker; Bjoern Weissler; Pierre Gebhardt; Benjamin Goldschmidt; Andre Salomon; Fabian Kiessling; Volkmar Schulz

We evaluate the MR compatibility of the Hyperion-II(D) positron emission tomography (PET) insert, which allows simultaneous operation in a clinical magnetic resonance imaging (MRI) scanner. In contrast to previous investigations, this work aims at the evaluation of a clinical crystal configuration. An imaging-capable demonstrator with an axial field-of-view of 32 mm and a crystal-to-crystal spacing of 217.6 mm was equipped with LYSO scintillators with a pitch of 4 mm which were read out in a one-to-one coupling scheme by sensor tiles composed of digital silicon photomultipliers from Philips Digital Photon Counting (DPC 3200-22). The PET performance degradation (energy resolution and coincidence resolution time (CRT)) was evaluated during simultaneous operation of the MRI scanner. We used clinically motivated imaging sequences as well as synthetic gradient stress test sequences. Without activity of the MRI scanner, we measured for trigger scheme 1 (first photon trigger) an energy resolution of 11.4% and a CRT of 213 ps for a narrow energy (NE) window using five (22)Na point-like sources. When applying the synthetic gradient sequences, we found worst-case relative degradations of the energy resolution by 5.1% and of the CRT by 33.9%. After identifying the origin of the degradations and implementing a fix to the read-out hardware, the same evaluation revealed no degradation of the PET performance anymore even when the most demanding gradient stress tests were applied. The PET performance of the insert was initially evaluated using the point sources, a high-activity phantom and hot-rod phantoms in order to assess the spatial resolution. Trigger schemes 2-4 delivered an energy resolution of 11.4% as well and CRTs of 279 ps, 333 ps and 557 ps for the NE window, respectively. An isocenter sensitivity of 0.41% using the NE window and 0.71% with a wide energy window was measured. Using a hot-rod phantom, a spatial resolution in the order of 2 mm was demonstrated and the benefit of time-of-flight PET was shown with a larger rabbit-sized phantom. In conclusion, the Hyperion architecture is an interesting platform for clinically driven hybrid PET/MRI systems.


ieee nuclear science symposium | 2011

Maximum likelihood based positioning and energy correction for pixelated solid state PET detectors

Christoph Lerche; Torsten Solf; Peter Michael Dueppenbecker; Benjamin Goldschmidt; Paul Marsden; Volkmar Schulz

As part of a preclinical MR compatible small animal PET scanner, a compact block detector for gamma-ray detection has been developed. The block detector consists of a LYSO crystal array with 22 × 22 pixels and an array of 8 × 8 Silicon photomultiplier. An intermediate light guide enables positioning by light-sharing. Due to dark noise and variations of the photomultiplier gain and the light collection efficiency, the crystal identification and energy computation using the center of gravity method is erroneous. We propose an alternative positioning scheme that is based on maximizing the likelihood of the scintillation events. The method directly gives the index of the active crystal pixel and allows also to correct the registered gamma-ray energy. First studies show that the all-over energy resolution for one block detector is enhanced from about 28% to 15%. For the used data set, energy correction with the presented method clearly outperforms energy correction based on the center of gravity method.


IEEE Transactions on Nuclear Science | 2015

Data Processing for a High Resolution Preclinical PET Detector Based on Philips DPC Digital SiPMs

David Schug; Jakob Wehner; Benjamin Goldschmidt; Christoph Lerche; Peter Michael Dueppenbecker; Patrick Hallen; Bjoern Weissler; Pierre Gebhardt; Fabian Kiessling; Volkmar Schulz

In positron emission tomography (PET) systems, light sharing techniques are commonly used to readout scintillator arrays consisting of scintillation elements, which are smaller than the optical sensors. The scintillating element is then identified evaluating the signal heights in the readout channels using statistical algorithms, the center of gravity (COG) algorithm being the simplest and mostly used one. We propose a COG algorithm with a fixed number of input channels in order to guarantee a stable calculation of the position. The algorithm is implemented and tested with the raw detector data obtained with the Hyperion-II D preclinical PET insert which uses Philips Digital Photon Countings (PDPC) digitial SiPMs. The gamma detectors use LYSO scintillator arrays with 30 ×30 crystals of 1 ×1 ×12 mm3 in size coupled to 4 ×4 PDPC DPC 3200-22 sensors (DPC) via a 2-mm-thick light guide. These self-triggering sensors are made up of 2 ×2 pixels resulting in a total of 64 readout channels. We restrict the COG calculation to a main pixel, which captures most of the scintillation light from a crystal, and its (direct and diagonal) neighboring pixels and reject single events in which this data is not fully available. This results in stable COG positions for a crystal element and enables high spatial image resolution. Due to the sensor layout, for some crystals it is very likely that a single diagonal neighbor pixel is missing as a result of the low light level on the corresponding DPC. This leads to a loss of sensitivity, if these events are rejected. An enhancement of the COG algorithm is proposed which handles the potentially missing pixel separately both for the crystal identification and the energy calculation. Using this advancement, we show that the sensitivity of the Hyperion-II D insert using the described scintillator configuration can be improved by 20-100% for practical useful readout thresholds of a single DPC pixel ranging from 17-52 photons. Furthermore, we show that the energy resolution of the scanner is superior for all readout thresholds if singles with a single missing pixel are accepted and correctly handled compared to the COG method only accepting singles with all neighbors present by 0-1.6% (relative difference). The presented methods can not only be applied to gamma detectors employing DPC sensors, but can be generalized to other similarly structured and self-triggering detectors, using light sharing techniques, as well.


Physics in Medicine and Biology | 2016

Initial PET Performance Evaluation of a Preclinical Insert for PET/MRI with Digital SiPM Technology

David Schug; Christoph Lerche; Bjoern Weissler; Pierre Gebhardt; Benjamin Goldschmidt; Jakob Wehner; Peter Michael Dueppenbecker; Andre Salomon; Patrick Hallen; Fabian Kiessling; Volkmar Schulz

Abstract Hyperion-IID is a positron emission tomography (PET) insert which allows simultaneous operation in a clinical magnetic resonance imaging (MRI) scanner. To read out the scintillation light of the employed lutetium yttrium orthosilicate crystal arrays with a pitch of 1 mm and 12 mm in height, digital silicon photomultipliers (DPC 3200-22, Philips Digital Photon Counting) (DPC) are used. The basic PET performance in terms of energy resolution, coincidence resolution time (CRT) and sensitivity as a function of the operating parameters, such as the operating temperature, the applied overvoltage, activity and configuration parameters of the DPCs, has been evaluated at system level. The measured energy resolution did not show a large dependency on the selected parameters and is in the range of 12.4%–12.9% for low activity, degrading to  ∼13.6% at an activity of  ∼100 MBq. The CRT strongly depends on the selected trigger scheme (trig) of the DPCs, and we measured approximately 260 ps, 440 ps, 550 ps and 1300 ps for trig 1–4, respectively. The trues sensitivity for a NEMA NU 4 mouse-sized scatter phantom with a 70 mm long tube of activity was dependent on the operating parameters and was determined to be 0.4%–1.4% at low activity. The random fraction stayed below 5% at activity up to 100 MBq and the scatter fraction was evaluated as  ∼6% for an energy window of 411 keV–561 keV and  ∼16% for 250 keV–625 keV. Furthermore, we performed imaging experiments using a mouse-sized hot-rod phantom and a large rabbit-sized phantom. In 2D slices of the reconstructed mouse-sized hot-rod phantom (∅ = 28 mm), the rods were distinguishable from each other down to a rod size of 0.8 mm. There was no benefit from the better CRT of trig 1 over trig 3, where in the larger rabbit-sized phantom (∅ = 114 mm) we were able to show a clear improvement in image quality using the time-of-flight information. The findings will allow system architects—aiming at a similar detector design using DPCs—to make predictions about the design requirements and the performance that can be expected.


IEEE Transactions on Nuclear Science | 2015

ToF Performance Evaluation of PET Modules With Digital Silicon Photomultiplier Technology During MR Operation

David Schug; Jakob Wehner; Peter Michael Dueppenbecker; Bjoern Weissler; Pierre Gebhardt; Benjamin Goldschmidt; Torsten Solf; Fabian Kiessling; Volkmar Schulz

In 2012, we presented the Hyperion-II D preclinical PET insert which uses Philips Digital Photon Countings digital SiPMs and is designed to be operated in a 3-T MRI. In this work we use the same platform equipped with scintillators having dimensions closer to a clinical application. This allows an investigation of the time of flight (ToF) performance of the platform and its behavior during simultaneous MR operation. We employ LYSO crystal arrays of 4×4 ×10 mm3 coupled to 4 ×4 PDPC DPC 3200-22 sensors (DPC) resulting in a one-to-one coupling of crystals to read-out channels. Six sensor stacks are mounted onto a singles processing unit in a 2 ×3 arrangement. Two modules are mounted horizontally facing each other on a gantry with a crystal-to-crystal spacing of 217.6 mm (gantry position). A second arrangement places the modules at the maximum distance of approximately 410 mm inside the MR bore (maximum distance position) which brings each module close to the gradient system. The DPCs are cooled down to approximately 5-10° C under operation. We disable 20% of the worst cells and use an overvoltage of Vov = 2.0 V and 2.5 V. To obtain the best time stamps, we use the trigger scheme 1 (first photon trigger), a narrow energy window of 511 ±50 keV and a minimum required light fraction of the main pixel of more than 65% to reject intercrystal scatter. By using a 22Na point source in the isocenter of the modules, the coincidence resolution time (CRT) of the two modules is evaluated inside the MRI system without MR activity and while using highly demanding gradient sequences. Inside the B0 field without any MR activity at an overvoltage of Vov = 2.0 V, the energy resolution is 11.45% (FWHM) and the CRT is 250 ps (FWHM). At an overvoltage of Vov = 2.5 V, the energy resolution is 11.15% (FWHM) and the CRT is 240 ps (FWHM). During a heavy z-gradient sequence (EPI factor: 49, gradient strength: 30 mT/m, slew rate: 192.3 mT/m/ms, TE/TR: 12/25 ms and switching duty cycle: 67%) at the gantry position and an overvoltage of Vov = 2.0 V, the energy resolution is degraded relatively by 4.1% and the CRT by 25%. Using the same sequence but at the maximum distance position and an overvoltage of Vov = 2.5 V, we measure a degradation of the energy resolution of 9.2% and a 52% degradation of the CRT. The Hyperion-IID platform proofs to deliver good timing performance and energy resolution inside the MRI system even under highly demanding gradient sequences.

Collaboration


Dive into the Benjamin Goldschmidt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Schug

RWTH Aachen University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge