Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benjamin H. Rotstein is active.

Publication


Featured researches published by Benjamin H. Rotstein.


Chemical Reviews | 2014

Small heterocycles in multicomponent reactions.

Benjamin H. Rotstein; Serge Zaretsky; Vishal Rai; Andrei K. Yudin

Benjamin H. Rotstein,†,‡ Serge Zaretsky,† Vishal Rai,†,§ and Andrei K. Yudin*,† †Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario Canada, M5S 3H6 ‡Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, and Department of Radiology, Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Indore By-pass Road, Bhauri, Bhopal 462 066, MP India


Nature Communications | 2014

Spirocyclic hypervalent iodine(III)-mediated radiofluorination of non-activated and hindered aromatics

Benjamin H. Rotstein; Nickeisha A. Stephenson; Neil Vasdev; Steven H. Liang

Fluorine-18 (t½=109.7 min) is the most commonly used isotope to prepare radiopharmaceuticals for molecular imaging by positron emission tomography (PET). Nucleophilic aromatic substitution reactions of suitably activated (electron-deficient) aromatic substrates with no-carrier-added [(18)F]fluoride ion are routinely carried out in the synthesis of radiotracers in high specific activities. Despite extensive efforts to develop a general (18)F-labelling technique for non-activated arenes there is an urgent and unmet need to achieve this goal. Here we describe an effective solution that relies on the chemistry of spirocyclic hypervalent iodine(III) complexes, which serve as precursors for rapid, one-step regioselective radiofluorination with [(18)F]fluoride. This methodology proves to be efficient for radiolabelling a diverse range of non-activated functionalized arenes and heteroarenes, including arene substrates bearing electron-donating groups, bulky ortho functionalities, benzylic substituents and meta-substituted electron-withdrawing groups. Polyfunctional molecules and a range of previously elusive (18)F-labelled building blocks, compounds and radiopharmaceuticals are synthesized.


Chemical Communications | 2013

11CO2 fixation: a renaissance in PET radiochemistry

Benjamin H. Rotstein; Steven H. Liang; Jason P. Holland; Thomas Lee Collier; Jacob M. Hooker; Alan A. Wilson; Neil Vasdev

Carbon-11 labelled carbon dioxide is the cyclotron-generated feedstock reagent for most positron emission tomography (PET) tracers using this radionuclide. Most carbon-11 labels, however, are installed using derivative reagents generated from [(11)C]CO2. In recent years, [(11)C]CO2 has seen a revival in applications for the direct incorporation of carbon-11 into functional groups such as ureas, carbamates, oxazolidinones, carboxylic acids, esters, and amides. This review summarizes classical [(11)C]CO2 fixation strategies using organometallic reagents and then focuses on newly developed methods that employ strong organic bases to reversibly capture [(11)C]CO2 into solution, thereby enabling highly functionalized labelled compounds to be prepared. Labelled compounds and radiopharmaceuticals that have been translated to the clinic are highlighted.


Nature Protocols | 2010

Synthesis of peptide macrocycles using unprotected amino aldehydes

Benjamin H. Rotstein; Vishal Rai; Ryan Hili; Andrei K. Yudin

This protocol describes a method for synthesizing peptide macrocycles from linear peptide precursors, isocyanides and aziridine aldehydes. The effects of the reaction components on the efficiency of the process are discussed. Macrocyclization is exemplified by the preparation of a nine-membered ring peptide macrocycle. The product is further functionalized by nucleophilic opening of the aziridine ring with a fluorescent thiol. This transformation constitutes a useful late-stage functionalization of a macrocyclic peptide molecule. The experimental section describes the selection of the required starting materials, and the preparation of a representative aziridine-2-carboxaldehyde dimer. The synthesis and isolation of the peptide macrocycle can be accomplished in 6 h, and the ring-opening requires approximately 6–8 h. The aziridine-2-carboxaldehyde reagent is commercially available or can be synthesized from readily available starting materials in approximately 4 d. The strategy described is not limited to the specific peptide, isocyanide, aziridine aldehyde or nucleophile used in the representative synthesis.


Journal of Labelled Compounds and Radiopharmaceuticals | 2014

Alternative approaches for PET radiotracer development in Alzheimer's disease: imaging beyond plaque †

Jason P. Holland; Steven H. Liang; Benjamin H. Rotstein; Thomas Lee Collier; Nickeisha A. Stephenson; Ivan Greguric; Neil Vasdev

Alzheimers disease (AD) and related dementias show increasing clinical prevalence, yet our understanding of the etiology and pathobiology of disease-related neurodegeneration remains limited. In this regard, noninvasive imaging with radiotracers for positron emission tomography (PET) presents a unique tool for quantifying spatial and temporal changes in characteristic biological markers of brain disease and for assessing potential drug efficacy. PET radiotracers targeting different protein markers are being developed to address questions pertaining to the molecular and/or genetic heterogeneity of AD and related dementias. For example, radiotracers including [(11) C]-PiB and [(18) F]-AV-45 (Florbetapir) are being used to measure the density of Aβ-plaques in AD patients and to interrogate the biological mechanisms of disease initiation and progression. Our focus is on the development of novel PET imaging agents, targeting proteins beyond Aβ-plaques, which can be used to investigate the broader mechanism of AD pathogenesis. Here, we present the chemical basis of various radiotracers which show promise in preclinical or clinical studies for use in evaluating the phenotypic or biochemical characteristics of AD. Radiotracers for PET imaging neuroinflammation, metal ion association with Aβ-plaques, tau protein, cholinergic and cannabinoid receptors, and enzymes including glycogen-synthase kinase-3β and monoamine oxidase B amongst others, and their connection to AD are highlighted.


Bioconjugate Chemistry | 2012

Conformational modulation of in vitro activity of cyclic RGD peptides via aziridine aldehyde-driven macrocyclization chemistry.

Áron Roxin; Juan Chen; Conor C. G. Scully; Benjamin H. Rotstein; Andrei K. Yudin; Gang Zheng

Here, we demonstrate a conjugation strategy whereby cyclic RGD-containing macrocycles are prepared using aziridine aldehydes, isocyanides, and linear peptides, followed by conjugation to a cysteamine linker. Our method involves site-selective aziridine ring-opening with the nucleophilic sulfhydryl group of cysteamine. Fluorescein was then efficiently conjugated to the primary amine of cysteamine by NHS-chemistry. This strategy may be expanded to provide easy access to a wide variety of fluorescent dyes or radiometal chelators. Modeling studies showed that aziridine aldehyde cyclization chemistry stabilized the RGD motif into the required bioactive conformation and that this cyclization chemistry modulated the geometry of macrocycles of different residue lengths. In vitro studies showed that cPRGDA and cPRGDAA both selectively bound to α(V)β(3)-overexpressing U87 glioblastoma cells, and that cPRGDA had a better binding affinity compared to cPRGDAA. The improved binding affinity of cPRGDA was attributed to the fixed Pro-C(α)-Asp-C(α) distance surrounding the stabilized RGD motif in cPRGDA.


Chemical Communications | 2012

Thioester-isocyanides: versatile reagents for the synthesis of cycle–tail peptides

Benjamin H. Rotstein; David J. Winternheimer; Lois M. Yin; Charles M. Deber; Andrei K. Yudin

A novel class of reagents, thioester isocyanides, have been prepared and applied in the synthesis of peptide macrocycles. The isocyanide part of the molecule is deployed in a multicomponent macrocyclization step. This step is followed by chemoselective peptide ligation at the thioester part of the macrocycle. Our method can now be used for rapid assembly and evaluation of cycle-tail peptides.


ACS Medicinal Chemistry Letters | 2014

Synthesis of [11C]Bexarotene by Cu-Mediated [11C]Carbon Dioxide Fixation and Preliminary PET Imaging

Benjamin H. Rotstein; Jacob M. Hooker; Jiyeon Woo; Thomas Lee Collier; Thomas J. Brady; Steven H. Liang; Neil Vasdev

Bexarotene (Targretin) is a retinoid X receptor (RXR) agonist that has applications for treatment of T cell lymphoma and proposed mechanisms of action in Alzheimers disease that have been the subject of recent controversy. Carbon-11 labeled bexarotene ([(11)C-carbonyl]4-[1-(3,5,5,8,8-pentamethyltetralin-2-yl)ethenyl]benzoic acid) was synthesized using a Cu-mediated cross-coupling reaction employing an arylboronate precursor 1 and [(11)C]carbon dioxide under atmospheric pressure in 15 ± 2% uncorrected radiochemical yield (n = 3), based on [(11)C]CO2. Judicious choice of solvents, catalysts, and additives, as well as precursor concentration and purity of [(11)C]CO2, enabled the preparation of this (11)C-labeled carboxylic acid. Formulated [(11)C]bexarotene was isolated (>37 mCi) with >99% radiochemical purity in 32 min. Preliminary positron emission tomography-magnetic resonance imaging revealed rapid brain uptake in nonhuman primate in the first 75 s following intravenous administration of the radiotracer (specific activity >0.3 Ci/μmol at time of injection), followed by slow clearance (Δ = -43%) over 60 min. Modest uptake (SUVmax = 0.8) was observed in whole brain and regions with high RXR expression.


Journal of Organic Chemistry | 2014

Stereocontrolled Disruption of the Ugi Reaction toward the Production of Chiral Piperazinones: Substrate Scope and Process Development

Serge Zaretsky; Shinya Adachi; Benjamin H. Rotstein; Jennifer L. Hickey; Conor C. G. Scully; Jeffrey D. St. Denis; Rebecca J. M. Courtemanche; Joy C. Y. Yu; Benjamin K. W. Chung; Andrei K. Yudin

The factors determining diastereoselectivity observed in the multicomponent conversion of amino acids, aziridine aldehyde dimers, and isocyanides into chiral piperazinones have been investigated. Amino acid-dependent selectivity for either trans- or cis-substituted piperazinone products has been achieved. An experimentally determined diastereoselectivity model for the three-component reaction driven by aziridine aldehyde dimers has predictive value for different substrate classes. Moreover, this model is useful in reconciling the previously reported observations in multicomponent reactions between isocyanides, α-amino acids, and monofunctional aldehydes.


Journal of Organic Chemistry | 2014

Shifting the energy landscape of multicomponent reactions using aziridine aldehyde dimers: a mechanistic study.

Lee Belding; Serge Zaretsky; Benjamin H. Rotstein; Andrei K. Yudin; Travis Dudding

A multicomponent reaction between an aziridine aldehyde dimer, isocyanide, and l-proline to afford a chiral piperazinone was studied to gain insight into the stereodetermining and rate-limiting steps of the reaction. The stereochemistry of the reaction was found to be determined by isocyanide addition, while the rate-limiting step was found to deviate from traditional isocyanide-based multicomponent reactions. A first-order rate dependence on aziridine aldehyde dimer and a zero-order rate dependence on all other reagents have been obtained. Computations at the MPWPW91/6-31G(d) level supported the experimental kinetic results and provide insight into the overall mechanism and the factors contributing to stereochemical induction. These factors are similar to traditional isocyanide-based multicomponent reactions, such as the Ugi reaction. The computations revealed that selective formation of a Z-iminium ion plays a key role in controlling the stereoselectivity of isocyanide addition, and the carboxylate group of l-proline mediates stereofacial addition. These conclusions are expected to be applicable to a wide range of reported stereoselective Ugi reactions and provide a basis for understanding the related macrocyclization of peptides with aziridine aldehydes.

Collaboration


Dive into the Benjamin H. Rotstein's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan A. Wilson

Centre for Addiction and Mental Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge