Benjamin J. Liebeskind
University of Texas at Austin
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Benjamin J. Liebeskind.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Benjamin J. Liebeskind; David M. Hillis; Harold H. Zakon
Voltage-dependent sodium channels are believed to have evolved from calcium channels at the origin of the nervous system. A search of the genome of a single-celled choanoflagellate (the sister group of animals) identified a gene that is homologous to animal sodium channels and has a putative ion selectivity filter intermediate between calcium and sodium channels. Searches of a wide variety of animal genomes, including representatives of each basal lineage, revealed that similar homologs were retained in most lineages. One of these, the Placozoa, does not possess a nervous system. We cloned and sequenced the full choanoflagellate channel and parts of two placozoan channels from mRNA, showing that they are expressed. Phylogenetic analysis clusters the genes for these channels with other known sodium channels. From this phylogeny we infer ancestral states of the ion selectivity filter and show that this state has been retained in the choanoflagellate and placozoan channels. We also identify key gene duplications and losses and show convergent amino acid replacements at important points along the animal lineage.
The Journal of Experimental Biology | 2015
Yehu Moran; Maya Gur Barzilai; Benjamin J. Liebeskind; Harold H. Zakon
Voltage-gated ion channels are large transmembrane proteins that enable the passage of ions through their pore across the cell membrane. These channels belong to one superfamily and carry pivotal roles such as the propagation of neuronal and muscular action potentials and the promotion of neurotransmitter secretion in synapses. In this review, we describe in detail the current state of knowledge regarding the evolution of these channels with a special emphasis on the metazoan lineage. We highlight the contribution of the genomic revolution to the understanding of ion channel evolution and for revealing that these channels appeared long before the appearance of the first animal. We also explain how the elucidation of channel selectivity properties and function in non-bilaterian animals such as cnidarians (sea anemones, corals, jellyfish and hydroids) can contribute to the study of channel evolution. Finally, we point to open questions and future directions in this field of research.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Benjamin J. Liebeskind; David M. Hillis; Harold H. Zakon
Significance The early evolution of animal nervous systems is poorly understood, but comparative genomics provides a new window into the past. One important controversy is about whether nervous systems evolved just once or independently in different animal lineages. In this work, we explore the history of the gene families most central to nervous system function: ion channels. We track when these gene families expanded in animal evolution and find that these gene families radiated on several occasions and, in some cases, underwent periods of contraction. The multiple origins of these gene families may signify large-scale convergent evolution of nervous system complexity. Multicellularity has evolved multiple times, but animals are the only multicellular lineage with nervous systems. This fact implies that the origin of nervous systems was an unlikely event, yet recent comparisons among extant taxa suggest that animal nervous systems may have evolved multiple times independently. Here, we use ancestral gene content reconstruction to track the timing of gene family expansions for the major families of ion-channel proteins that drive nervous system function. We find that animals with nervous systems have broadly similar complements of ion-channel types but that these complements likely evolved independently. We also find that ion-channel gene family evolution has included large loss events, two of which were immediately followed by rounds of duplication. Ctenophores, cnidarians, and bilaterians underwent independent bouts of gene expansion in channel families involved in synaptic transmission and action potential shaping. We suggest that expansions of these family types may represent a genomic signature of expanding nervous system complexity. Ancestral nodes in which nervous systems are currently hypothesized to have originated did not experience large expansions, making it difficult to distinguish among competing hypotheses of nervous system origins and suggesting that the origin of nerves was not attended by an immediate burst of complexity. Rather, the evolution of nervous system complexity appears to resemble a slow fuse in stem animals followed by many independent bouts of gene gain and loss.
Trends in Ecology and Evolution | 2016
Benjamin J. Liebeskind; David M. Hillis; Harold H. Zakon; Hans A. Hofmann
We examine the complex evolution of animal nervous systems and discuss the ramifications of this complexity for inferring the nature of early animals. Although reconstructing the origins of nervous systems remains a central challenge in biology, and the phenotypic complexity of early animals remains controversial, a compelling picture is emerging. We now know that the nervous system and other key animal innovations contain a large degree of homoplasy, at least on the molecular level. Conflicting hypotheses about early nervous system evolution are due primarily to differences in the interpretation of this homoplasy. We highlight the need for explicit discussion of assumptions and discuss the limitations of current approaches for inferring ancient phenotypic states.
Frontiers in Molecular Neuroscience | 2014
Alfredo Ghezzi; Benjamin J. Liebeskind; Ammon Thompson; Nigel S. Atkinson; Harold H. Zakon
Neuronal resting potential can tune the excitability of neural networks, affecting downstream behavior. Sodium leak channels (NALCN) play a key role in rhythmic behaviors by helping set, or subtly changing neuronal resting potential. The full complexity of these newly described channels is just beginning to be appreciated, however. NALCN channels can associate with numerous subunits in different tissues and can be activated by several different peptides and second messengers. We recently showed that NALCN channels are closely related to fungal calcium channels, which they functionally resemble. Here, we use this relationship to predict a family of NALCN-associated proteins in animals on the basis of homology with the yeast protein Mid1, the subunit of the yeast calcium channel. These proteins all share a cysteine-rich region that is necessary for Mid1 function in yeast. We validate this predicted association by showing that the Mid1 homolog in Drosophila, encoded by the CG33988 gene, is coordinately expressed with NALCN, and that knockdown of either protein creates identical phenotypes in several behaviors associated with NALCN function. The relationship between Mid1 and leak channels has therefore persisted over a billion years of evolution, despite drastic changes to both proteins and the organisms in which they exist.
Proceedings of the National Academy of Sciences of the United States of America | 2016
D. Brent Halling; Benjamin J. Liebeskind; Amelia W. Hall; Richard W. Aldrich
Significance Calmodulin is essential for sensing intracellular Ca2+ in eukaryotic cells. Calmodulin modulates hundreds of effectors, and it has a highly conserved protein sequence. Humans have three identical copies, but a change in either the protein sequence or the protein expression level of any one of the three copies can cause life-threatening disease. We analyzed calmodulin sequences across eukaryotes and compared biophysical properties and structures to show that all of calmodulin’s four Ca2+-binding sites have conserved properties that distinguish them from one another. Calmodulin (CaM) is a Ca2+-sensing protein that is highly conserved and ubiquitous in eukaryotes. In humans it is a locus of life-threatening cardiomyopathies. The primary function of CaM is to transduce Ca2+ concentration into cellular signals by binding to a wide range of target proteins in a Ca2+-dependent manner. We do not fully understand how CaM performs its role as a high-fidelity signal transducer for more than 300 target proteins, but diversity among its four Ca2+-binding sites, called EF-hands, may contribute to CaM’s functional versatility. We therefore looked at the conservation of CaM sequences over deep evolutionary time, focusing primarily on the four EF-hand motifs. Expanding on previous work, we found that CaM evolves slowly but that its evolutionary rate is substantially faster in fungi. We also found that the four EF-hands have distinguishing biophysical and structural properties that span eukaryotes. These results suggest that all eukaryotes require CaM to decode Ca2+ signals using four specialized EF-hands, each with specific, conserved traits. In addition, we provide an extensive map of sites associated with target proteins and with human disease and correlate these with evolutionary sequence diversity. Our comprehensive evolutionary analysis provides a basis for understanding the sequence space associated with CaM function and should help guide future work on the relationship between structure, function, and disease.
Genome Biology and Evolution | 2016
Benjamin J. Liebeskind; Claire D. McWhite; Edward M. Marcotte
Correctly estimating the age of a gene or gene family is important for a variety of fields, including molecular evolution, comparative genomics, and phylogenetics, and increasingly for systems biology and disease genetics. However, most studies use only a point estimate of a gene’s age, neglecting the substantial uncertainty involved in this estimation. Here, we characterize this uncertainty by investigating the effect of algorithm choice on gene-age inference and calculate consensus gene ages with attendant error distributions for a variety of model eukaryotes. We use 13 orthology inference algorithms to create gene-age datasets and then characterize the error around each age-call on a per-gene and per-algorithm basis. Systematic error was found to be a large factor in estimating gene age, suggesting that simple consensus algorithms are not enough to give a reliable point estimate. We also found that different sources of error can affect downstream analyses, such as gene ontology enrichment. Our consensus gene-age datasets, with associated error terms, are made fully available at so that researchers can propagate this uncertainty through their analyses (geneages.org).
Current Opinion in Genetics & Development | 2015
Claire D. McWhite; Benjamin J. Liebeskind; Edward M. Marcotte
Direct comparison of human diseases with model phenotypes allows exploration of key areas of human biology which are often inaccessible for practical or ethical reasons. We review recent developments in comparative evolutionary approaches for finding models for genetic disease, including high-throughput generation of gene/phenotype relationship data, the linking of orthologous genes and phenotypes across species, and statistical methods for linking human diseases to model phenotypes.
The Journal of General Physiology | 2016
Benjamin J. Liebeskind
Action potentials in mammalian nerve and muscle are carried by sodium currents through voltage-gated sodium channels (NaV). These proteins are part of the larger family of voltage-gated channels that includes the well-known calcium (CaV) and potassium (KV) channels, as well as a variety of other
bioRxiv | 2018
Benjamin J. Liebeskind; Richard W. Aldrich; Edward M. Marcotte
The molecular and cellular basis of novelty is a major open question in evolutionary biology. Until very recently, the vast majority of cellular phenomena were so difficult to sample that cross-species studies of biochemistry were rare and comparative analysis at the level of biochemical systems was almost impossible. Recent advances in systems biology are changing what is possible, however, and comparative phylogenetic methods that can handle this new data are wanted. Here, we introduce the term “phylogenetic latent variable models” (PLVMs, pronounced “plums”) for a class of models that has recently been used to infer the evolution of cellular states from systems-level molecular data, and develop a new parameterization and fitting strategy that is useful for comparative inference of biochemical networks. We deploy this new framework to infer the ancestral states and evolutionary dynamics of protein-interaction networks by analyzing >16,000 predominantly metazoan co-fractionation and affinity-purification mass spectrometry experiments. Based on these data, we estimate ancestral interactions across unikonts, broadly recovering protein complexes involved in translation, transcription, proteostasis, transport, and membrane trafficking. Using these results, we predict an ancient core of the Commander complex made up of CCDC22, CCDC93, C16orf62, and DSCR3, with more recent additions of COMMD-containing proteins in tetrapods. We also use simulations to develop model fitting strategies and discuss future model developments.