Benjamin J. Perrin
University of Minnesota
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Benjamin J. Perrin.
Cytoskeleton | 2010
Benjamin J. Perrin; James M. Ervasti
Although actin is often thought of as a single protein, in mammals it actually consists of six different isoforms encoded by separate genes. Each isoform is remarkably similar to every other isoform, with only slight variations in amino acid sequence. Nevertheless, recent work indicates that actin isoforms carry out unique cellular functions. Here, we review evidence drawn from localization studies, mouse models, and biochemical characterization to suggest a model for how in vivo mixing of actin isoforms may influence cytoskeletal function in cells.
Nature | 2012
Duan Sun Zhang; Valeria Piazza; Benjamin J. Perrin; Agnieszka K. Rzadzinska; J. Collin Poczatek; Mei Wang; Haydn M. Prosser; James M. Ervasti; David P. Corey; C. Lechene
Hair cells of the inner ear are not normally replaced during an animal’s life, and must continually renew components of their various organelles. Among these are the stereocilia, each with a core of several hundred actin filaments that arise from their apical surfaces and that bear the mechanotransduction apparatus at their tips. Actin turnover in stereocilia has previously been studied by transfecting neonatal rat hair cells in culture with a β-actin–GFP fusion, and evidence was found that actin is replaced, from the top down, in 2–3 days. Overexpression of the actin-binding protein espin causes elongation of stereocilia within 12–24 hours, also suggesting rapid regulation of stereocilia lengths. Similarly, the mechanosensory ‘tip links’ are replaced in 5–10 hours after cleavage in chicken and mammalian hair cells. In contrast, turnover in chick stereocilia in vivo is much slower. It might be that only certain components of stereocilia turn over quickly, that rapid turnover occurs only in neonatal animals, only in culture, or only in response to a challenge like breakage or actin overexpression. Here we quantify protein turnover by feeding animals with a 15N-labelled precursor amino acid and using multi-isotope imaging mass spectrometry to measure appearance of new protein. Surprisingly, in adult frogs and mice and in neonatal mice, in vivo and in vitro, the stereocilia were remarkably stable, incorporating newly synthesized protein at <10% per day. Only stereocilia tips had rapid turnover and no treadmilling was observed. Other methods confirmed this: in hair cells expressing β-actin–GFP we bleached fiducial lines across hair bundles, but they did not move in 6 days. When we stopped expression of β- or γ-actin with tamoxifen-inducible recombination, neither actin isoform left the stereocilia, except at the tips. Thus, rapid turnover in stereocilia occurs only at the tips and not by a treadmilling process.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Inna A. Belyantseva; Benjamin J. Perrin; Kevin J. Sonnemann; Mei Zhu; Ruben Stepanyan; JoAnn McGee; Gregory I. Frolenkov; Edward J. Walsh; Karen H. Friderici; Thomas B. Friedman; James M. Ervasti
βcyto-Actin and γcyto-actin are ubiquitous proteins thought to be essential building blocks of the cytoskeleton in all non-muscle cells. Despite this widely held supposition, we show that γcyto-actin null mice (Actg1−/−) are viable. However, they suffer increased mortality and show progressive hearing loss during adulthood despite compensatory up-regulation of βcyto-actin. The surprising viability and normal hearing of young Actg1−/− mice means that βcyto-actin can likely build all essential non-muscle actin-based cytoskeletal structures including mechanosensory stereocilia of hair cells that are necessary for hearing. Although γcyto-actin–deficient stereocilia form normally, we found that they cannot maintain the integrity of the stereocilia actin core. In the wild-type, γcyto-actin localizes along the length of stereocilia but re-distributes to sites of F-actin core disruptions resulting from animal exposure to damaging noise. In Actg1−/− stereocilia similar disruptions are observed even without noise exposure. We conclude that γcyto-actin is required for reinforcement and long-term stability of F-actin–based structures but is not an essential building block of the developing cytoskeleton.
PLOS Genetics | 2010
Benjamin J. Perrin; Kevin J. Sonnemann; James M. Ervasti
Hair cell stereocilia structure depends on actin filaments composed of cytoplasmic β-actin and γ-actin isoforms. Mutations in either gene can lead to progressive hearing loss in humans. Since β-actin and γ-actin isoforms are 99% identical at the protein level, it is unclear whether each isoform has distinct cellular roles. Here, we compared the functions of β-actin and γ-actin in stereocilia formation and maintenance by generating mice conditionally knocked out for Actb or Actg1 in hair cells. We found that, although cytoplasmic actin is necessary, neither β-actin nor γ-actin is required for normal stereocilia development or auditory function in young animals. However, aging mice with β-actin– or γ-actin–deficient hair cells develop different patterns of progressive hearing loss and distinct pathogenic changes in stereocilia morphology, despite colocalization of the actin isoforms. These results demonstrate overlapping developmental roles but unique post-developmental functions for β-actin and γ-actin in maintaining hair cell stereocilia.
The Journal of Neuroscience | 2013
Benjamin J. Perrin; Dana M. Strandjord; Praveena Narayanan; Davin M. Henderson; Kenneth R. Johnson; James M. Ervasti
Stereocilia are actin-based protrusions on auditory sensory hair cells that are deflected by sound waves to initiate the conversion of mechanical energy to neuronal signals. Stereocilia maintenance is essential because auditory hair cells are not renewed in mammals. This process requires both β-actin and γ-actin as knock-out mice lacking either isoform develop distinct stereocilia pathology during aging. In addition, stereocilia integrity may hinge on immobilizing actin, which outside of a small region at stereocilia tips turns over with a very slow, months-long half-life. Here, we establish that β-actin and the actin crosslinking protein fascin-2 cooperate to maintain stereocilia length and auditory function. We observed that mice expressing mutant fascin-2 (p.R109H) or mice lacking β-actin share a common phenotype including progressive, high-frequency hearing loss together with shortening of a defined subset of stereocilia in the hair cell bundle. Fascin-2 binds β-actin and γ-actin filaments with similar affinity in vitro and fascin-2 does not depend on β-actin for localization in vivo. Nevertheless, double-mutant mice lacking β-actin and expressing fascin-2 p.R109H have a more severe phenotype suggesting that each protein has a different function in a common stereocilia maintenance pathway. Because the fascin-2 p.R109H mutant binds but fails to efficiently crosslink actin filaments, we propose that fascin-2 crosslinks function to slow actin depolymerization at stereocilia tips to maintain stereocilia length.
Nature Communications | 2015
Praveena Narayanan; Paul Chatterton; Akihiro Ikeda; Sakae Ikeda; David P. Corey; James M. Ervasti; Benjamin J. Perrin
Auditory sensory hair cells depend on stereocilia with precisely regulated lengths to detect sound. Since stereocilia are primarily composed of cross-linked, parallel actin filaments, regulated actin dynamics are essential for controlling stereocilia length. Here, we assessed stereocilia actin turnover by monitoring incorporation of inducibly expressed β-actin-GFP in adult mouse hair cells in vivo and by directly measuring β-actin-GFP turnover in explants. Stereocilia actin incorporation is remarkably slow and restricted to filament barbed ends in a small tip compartment, with minimal accumulation in the rest of the actin core. Shorter rows of stereocilia, which have mechanically-gated ion channels, show more variable actin turnover than the tallest stereocilia, which lack channels. Finally, the proteins ADF and AIP1, which both mediate actin filament severing, contribute to stereocilia length maintenance. Together, the data support a model whereby stereocilia actin cores are largely static, with dynamic regulation at the tips to maintain a critical length.
Molecular Biology of the Cell | 2017
Xiaobai Patrinostro; Allison R. O'Rourke; Christopher M. Chamberlain; Branden S. Moriarity; Benjamin J. Perrin; James M. Ervasti
Both gene- and transcript-targeted ablations of Actb expression demonstrate that βcyto-actin is more disruptive than γcyto-actin to primary fibroblast function. This is evident via a decrease in cell proliferation and cellular ATP and an increase in myofibroblast differentiation signaling and protein expression in Actb-null primary cells.
PLOS ONE | 2016
Abhijit Dandapat; Benjamin J. Perrin; Christine A. Cabelka; Maria Razzoli; James M. Ervasti; Alessandro Bartolomucci; Dawn A. Lowe; Michael Kyba
Facioscapulohumeral muscular dystrophy (FSHD) is caused by mutations leading to ectopic expression of the transcription factor DUX4, and encompasses both muscle-related and non-muscle phenotypes. Mouse models bearing this gene represent valuable tools to investigate which pathologies are due to DUX4 expression, and how DUX4 leads to these pathologies. The iDUX4(2.7) mouse contains an X-linked doxycycline-inducible DUX4 gene that shows low level basal expression in the absence of doxycycline, leading to male lethality, generally in embryo, but always before 8 weeks of age. Here, we describe additional non-muscle phenotypes in this animal model. We find that iDUX4(2.7) female carriers are extremely hyperactive, spending large amounts of time ambulating and much less time resting. Rare 3-week old males, although hypophagic, runted and extremely fragile, are capable of high activity, but show periods of catatonic torpor in which animals appear dead and respiration is virtually absent. We also examine a non-muscle phenotype of interest to FSHD, high frequency hearing loss. We find that young iDUX4(2.7) females are significantly impaired in their ability to hear at frequencies above 8 kHz. These phenotypes make the iDUX4(2.7) mouse an attractive model in which to study non-muscle activities of DUX4.
FEBS Journal | 2018
Allison R. O'Rourke; Angus Lindsay; Michael D. Tarpey; Samantha Yuen; Preston McCourt; D'anna M. Nelson; Benjamin J. Perrin; David D. Thomas; Espen E. Spangenburg; Dawn A. Lowe; James M. Ervasti
While α‐actin isoforms predominate in adult striated muscle, skeletal muscle‐specific knockouts (KOs) of nonmuscle cytoplasmic βcyto‐ or γcyto‐actin each cause a mild, but progressive myopathy effected by an unknown mechanism. Using transmission electron microscopy, we identified morphological abnormalities in both the mitochondria and the sarcoplasmic reticulum (SR) in aged muscle‐specific βcyto‐ and γcyto‐actin KO mice. We found βcyto‐ and γcyto‐actin proteins to be enriched in isolated mitochondrial‐associated membrane preparations, which represent the interface between mitochondria and sarco‐endoplasmic reticulum important in signaling and mitochondrial dynamics. We also measured significantly elongated and interconnected mitochondrial morphologies associated with a significant decrease in mitochondrial fission events in primary mouse embryonic fibroblasts lacking βcyto‐ and/or γcyto‐actin. Interestingly, mitochondrial respiration in muscle was not measurably affected as oxygen consumption was similar in skeletal muscle fibers from 12 month‐old muscle‐specific βcyto‐ and γcyto‐actin KO mice. Instead, we found that the maximal rate of relaxation after isometric contraction was significantly slowed in muscles of 12‐month‐old βcyto‐ and γcyto‐actin muscle‐specific KO mice. Our data suggest that impaired Ca2+ re‐uptake may presage development of the observed SR morphological changes in aged mice while providing a potential pathological mechanism for the observed myopathy.
PLOS ONE | 2018
Eriko Shimada; Fasih M. Ahsan; Mahta Nili; Dian Huang; Sean Atamdede; Tara Teslaa; Dana Case; Xiang Yu; Brian D. Gregory; Benjamin J. Perrin; Carla M. Koehler; Michael A. Teitell
Polynucleotide phosphorylase (PNPase) is an essential mitochondria-localized exoribonuclease implicated in multiple biological processes and human disorders. To reveal role(s) for PNPase in mitochondria, we established PNPase knockout (PKO) systems by first shifting culture conditions to enable cell growth with defective respiration. Interestingly, PKO established in mouse embryonic fibroblasts (MEFs) resulted in the loss of mitochondrial DNA (mtDNA). The transcriptional profile of PKO cells was similar to rho0 mtDNA deleted cells, with perturbations in cholesterol (FDR = 6.35 x 10−13), lipid (FDR = 3.21 x 10−11), and secondary alcohol (FDR = 1.04x10-12) metabolic pathway gene expression compared to wild type parental (TM6) MEFs. Transcriptome analysis indicates processes related to axonogenesis (FDR = 4.49 x 10−3), axon development (FDR = 4.74 x 10−3), and axonal guidance (FDR = 4.74 x 10−3) were overrepresented in PKO cells, consistent with previous studies detailing causative PNPase mutations in delayed myelination, hearing loss, encephalomyopathy, and chorioretinal defects in humans. Overrepresentation analysis revealed alterations in metabolic pathways in both PKO and rho0 cells. Therefore, we assessed the correlation of genes implicated in cell cycle progression and total metabolism and observed a strong positive correlation between PKO cells and rho0 MEFs compared to TM6 MEFs. We quantified the normalized biomass accumulation rate of PKO clones at 1.7% (SD ± 2.0%) and 2.4% (SD ± 1.6%) per hour, which was lower than TM6 cells at 3.3% (SD ± 3.5%) per hour. Furthermore, PKO in mouse inner ear hair cells caused progressive hearing loss that parallels human familial hearing loss previously linked to mutations in PNPase. Combined, our study reports that knockout of a mitochondrial nuclease results in mtDNA loss and suggests that mtDNA maintenance could provide a unifying connection for the large number of biological activities reported for PNPase.