Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benjamin L. de Bivort is active.

Publication


Featured researches published by Benjamin L. de Bivort.


Science | 2009

Attractors and Democratic Dynamics

Yaneer Bar-Yam; Dion Harmon; Benjamin L. de Bivort

Cellular transcription networks are conceptualized as distributed control systems that regulate gene expression.


Nature | 2012

Asymmetric neurotransmitter release enables rapid odour lateralization in Drosophila

Quentin Gaudry; Elizabeth J. Hong; Jamey S. Kain; Benjamin L. de Bivort; Rachel I. Wilson

In Drosophila, most individual olfactory receptor neurons (ORNs) project bilaterally to both sides of the brain. Having bilateral rather than unilateral projections may represent a useful redundancy. However, bilateral ORN projections to the brain should also compromise the ability to lateralize odours. Nevertheless, walking or flying Drosophila reportedly turn towards the antenna that is more strongly stimulated by odour. Here we show that each ORN spike releases approximately 40% more neurotransmitter from the axon branch ipsilateral to the soma than from the contralateral branch. As a result, when an odour activates the antennae asymmetrically, ipsilateral central neurons begin to spike a few milliseconds before contralateral neurons, and at a 30 to 50% higher rate than contralateral neurons. We show that a walking fly can detect a 5% asymmetry in total ORN input to its left and right antennal lobes, and can turn towards the odour in less time than it requires the fly to complete a stride. These results demonstrate that neurotransmitter release properties can be tuned independently at output synapses formed by a single axon onto two target cells with identical functions and morphologies. Our data also show that small differences in spike timing and spike rate can produce reliable differences in olfactory behaviour.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Behavioral idiosyncrasy reveals genetic control of phenotypic variability

Julien F. Ayroles; Sean M. Buchanan; Chelsea O’Leary; Kyobi Skutt-Kakaria; Jennifer K. Grenier; Andrew G. Clark; Daniel L. Hartl; Benjamin L. de Bivort

Significance If we could rear genetically identical individuals from a variety of genetic backgrounds and rear them in the same environment, how much phenotypic variation between individuals of the same genotype would we see? Would different genetic backgrounds differ in their degree of variability? What would account for these differences? We used Drosophila inbred lines to address these questions focusing on variability in locomotor handedness. We show that different genotypes vary dramatically in their propensity for variability, that phenotypic variability itself, as a trait, can be heritable, and that loci affecting variability can be mapped. The genetic control of variability has received little attention in quantitative genetics despite the important role variability plays in explaining phenotypic variation between individuals. Quantitative genetics has primarily focused on describing genetic effects on trait means and largely ignored the effect of alternative alleles on trait variability, potentially missing an important axis of genetic variation contributing to phenotypic differences among individuals. To study the genetic effects on individual-to-individual phenotypic variability (or intragenotypic variability), we used Drosophila inbred lines and measured the spontaneous locomotor behavior of flies walking individually in Y-shaped mazes, focusing on variability in locomotor handedness, an assay optimized to measure variability. We discovered that some lines had consistently high levels of intragenotypic variability among individuals, whereas lines with low variability behaved as although they tossed a coin at each left/right turn decision. We demonstrate that the degree of variability is itself heritable. Using a genome-wide association study (GWAS) for the degree of intragenotypic variability as the phenotype across lines, we identified several genes expressed in the brain that affect variability in handedness without affecting the mean. One of these genes, Ten-a, implicates a neuropil in the central complex of the fly brain as influencing the magnitude of behavioral variability, a brain region involved in sensory integration and locomotor coordination. We validated these results using genetic deficiencies, null alleles, and inducible RNAi transgenes. Our study reveals the constellation of phenotypes that can arise from a single genotype and shows that different genetic backgrounds differ dramatically in their propensity for phenotypic variabililty. Because traditional mean-focused GWASs ignore the contribution of variability to overall phenotypic variation, current methods may miss important links between genotype and phenotype.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Phototactic personality in fruit flies and its suppression by serotonin and white

Jamey S. Kain; Chris Stokes; Benjamin L. de Bivort

Drosophila typically move toward light (phototax positively) when startled. The various species of Drosophila exhibit some variation in their respective mean phototactic behaviors; however, it is not clear to what extent genetically identical individuals within each species behave idiosyncratically. Such behavioral individuality has indeed been observed in laboratory arthropods; however, the neurobiological factors underlying individual-to-individual behavioral differences are unknown. We developed “FlyVac,” a high-throughput device for automatically assessing phototaxis in single animals in parallel. We observed surprising variability within every species and strain tested, including identically reared, isogenic strains. In an extreme example, a domesticated strain of Drosophila simulans harbored both strongly photopositive and strongly photonegative individuals. The particular behavior of an individual fly is not heritable and, because it persists for its lifetime, constitutes a model system for elucidating the molecular mechanisms of personality. Although all strains assayed had greater than expected variation (assuming binomial sampling), some had more than others, implying a genetic basis. Using genetics and pharmacology, we identified the metabolite transporter White and white-dependent serotonin as suppressors of phototactic personality. Because we observed behavioral idiosyncrasy in all experimental groups, we suspect it is present in most behaviors of most animals.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Sensorimotor structure of Drosophila larva phototaxis

Elizabeth Anne Kane; Marc Gershow; Bruno Afonso; Ivan Larderet; Mason Klein; Ashley R. Carter; Benjamin L. de Bivort; Simon G. Sprecher; Aravinthan D. T. Samuel

Significance Small animals such as Drosophila provide an opportunity to understand the neural circuitry for complex behaviors from sensory input to motor output without gaps. Here, we define the algorithms for Drosophila larva phototaxis (i.e., the maps between sensory input and motor output) by quantifying the movements of individual animals responding to a battery of illumination conditions. Surprisingly, the distinct rules that define different components of the overall photosensory response begin to segregate at the first synapses after the photoreceptor cells. These results lay the foundation for mapping the circuits for phototaxis in the compact nervous system of the larva by first elucidating the algorithms that define behavior and then mapping these algorithms to specific circuit pathways. The avoidance of light by fly larvae is a classic paradigm for sensorimotor behavior. Here, we use behavioral assays and video microscopy to quantify the sensorimotor structure of phototaxis using the Drosophila larva. Larval locomotion is composed of sequences of runs (periods of forward movement) that are interrupted by abrupt turns, during which the larva pauses and sweeps its head back and forth, probing local light information to determine the direction of the successive run. All phototactic responses are mediated by the same set of sensorimotor transformations that require temporal processing of sensory inputs. Through functional imaging and genetic inactivation of specific neurons downstream of the sensory periphery, we have begun to map these sensorimotor circuits into the larval central brain. We find that specific sensorimotor pathways that govern distinct light-evoked responses begin to segregate at the first relay after the photosensory neurons.


Invertebrate Systematics | 2004

A new genus of cyphophthalmid from the Iberian Peninsula with a phylogenetic analysis of the Sironidae (Arachnida : Opiliones : Cyphophthalmi) and a SEM database of external morphology

Benjamin L. de Bivort; Gonzalo Giribet

A new species of sironid from Portugal is described based on a single male specimen collected over half a century ago. The unique combination of character states and phylogenetic comparison with representatives of all sironid genera justifies the erection of a new genus, the fourth one found in the Iberian Peninsula. Phylogenetic analysis is conducted using equal weights and the implied weighting method as a means of testing the stability of clades with respect to parameter variation, in a similar fashion to the sensitivity analysis commonly performed in molecular data analyses. Results suggest that the new genus is sister to Paramiopsalis Juberthie, 1962, although nodal support for this relationship is low. The morphological data matrix is accompanied by scanning electron micrographs of most characters for 24 species to make the morphological coding as explicit as possible. Comparison of these images fostered the discovery and proper interpretation of characters and their states.


Nature Communications | 2013

Leg-tracking and automated behavioural classification in Drosophila

Jamey S. Kain; Chris R. Stokes; Quentin Gaudry; Xiangzhi Song; James Foley; Rachel I. Wilson; Benjamin L. de Bivort

Much remains unknown about how the nervous system of an animal generates behaviour, and even less is known about the evolution of behaviour. How does evolution alter existing behaviours or invent novel ones? Progress in computational techniques and equipment will allow these broad, complex questions to be explored in great detail. Here we present a method for tracking each leg of a fruit fly behaving spontaneously upon a trackball, in real time. Legs were tracked with infrared-fluorescent dyes invisible to the fly, and compatible with two-photon microscopy and controlled visual stimuli. We developed machine-learning classifiers to identify instances of numerous behavioural features (for example, walking, turning and grooming), thus producing the highest-resolution ethological profiles for individual flies.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Neuronal control of locomotor handedness in Drosophila

Sean M. Buchanan; Jamey S. Kain; Benjamin L. de Bivort

Significance Genetically identical individuals display variability in their behaviors even when reared in essentially identical environments. This variation underlies both personality and individuality, but there is little mechanistic understanding of how such differences arise. Here, we investigated individual-to-individual variation in locomotor behaviors of fruit flies. Surprisingly, individual flies exhibit significant bias in their left vs. right locomotor choices during exploratory locomotion, with some flies being strongly left biased or right biased. Using the Drosophila genetic toolkit, we find that the magnitude of locomotor handedness is under the control of neurons within a brain region implicated in motor planning and execution. This observation intriguingly implies that the brain may be able to dynamically regulate behavioral individuality. Genetically identical individuals display variability in their physiology, morphology, and behaviors, even when reared in essentially identical environments, but there is little mechanistic understanding of the basis of such variation. Here, we investigated whether Drosophila melanogaster displays individual-to-individual variation in locomotor behaviors. We developed a new high-throughout platform capable of measuring the exploratory behavior of hundreds of individual flies simultaneously. With this approach, we find that, during exploratory walking, individual flies exhibit significant bias in their left vs. right locomotor choices, with some flies being strongly left biased or right biased. This idiosyncrasy was present in all genotypes examined, including wild-derived populations and inbred isogenic laboratory strains. The biases of individual flies persist for their lifetime and are nonheritable: i.e., mating two left-biased individuals does not yield left-biased progeny. This locomotor handedness is uncorrelated with other asymmetries, such as the handedness of gut twisting, leg-length asymmetry, and wing-folding preference. Using transgenics and mutants, we find that the magnitude of locomotor handedness is under the control of columnar neurons within the central complex, a brain region implicated in motor planning and execution. When these neurons are silenced, exploratory laterality increases, with more extreme leftiness and rightiness. This observation intriguingly implies that the brain may be able to dynamically regulate behavioral individuality.


Invertebrate Systematics | 2009

A phylogenetic analysis for the South-east Asian mite harvestman family Stylocellidae (Opiliones : Cyphophthalmi) – a combined analysis using morphometric and molecular data

Ronald M. Clouse; Benjamin L. de Bivort; Gonzalo Giribet

In an effort to place type specimens lacking molecular data into a phylogenetic framework ahead of a taxonomic revision, we used morphometric data, both alone and in combination with a molecular dataset, to generate phylogenetic hypotheses under the parsimony criterion for 107 members of the South-east Asian mite harvestman family Stylocellidae (Arachnida: Opiliones: Cyphophthalmi). For the morphometric analyses, we used undiscretised characters, analysed for independence and collapsed by principal components analysis (PCA) when dependent. Two challenges not previously encountered in the use of this method were (a) handling terminals with missing data, necessitated by the inclusion of old and damaged type specimens, and (b) controlling for extreme variation in size. Custom scripts for independence analysis were modified to accommodate missing data whereby placeholder numbers were used during PCA for missing measurements. Size was controlled in four ways: choosing characters that avoided misleading size information and were easily scaled; using only locally scaled measurements; adjusting ratios by y-intercepts; and collapsing dependent characters into one. These steps removed enough size information that miniaturised and large species, suspected from molecular and discrete morphological studies to be closely related, were closely placed using morphometric data alone. Both morphometric and combined analyses generated relationships that positioned type specimens in agreement with taxonomic expectations and our knowledge of the family from prior studies. The hypotheses generated here provide new direction in linking molecular analyses with established taxonomy in this large group of South-east Asian arachnids.


Developmental Cell | 2012

Determinants of the Drosophila Odorant Receptor Pattern

Erin Song; Benjamin L. de Bivort; Chuntao Dan; Sam Kunes

In most olfactory systems studied to date, neurons that express the same odorant receptor (Or) gene are scattered across sensory epithelia, intermingled with neurons that express different Or genes. In Drosophila, olfactory sensilla that express the same Or gene are dispersed on the antenna and the maxillary palp. Here we show that Or identity is specified in a spatially stereotyped pattern by the cell-autonomous activity of the transcriptional regulators Engrailed and Dachshund. Olfactory sensilla then become highly motile and disperse beneath the epidermis. Thus, positional information and cell motility underlie the dispersed patterns of Drosophila Or gene expression.

Collaboration


Dive into the Benjamin L. de Bivort's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ronald M. Clouse

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yaneer Bar-Yam

New England Complex Systems Institute

View shared research outputs
Top Co-Authors

Avatar

Prashant P. Sharma

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge