Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benjamin L. King is active.

Publication


Featured researches published by Benjamin L. King.


Nature Biotechnology | 2007

Characterization of human embryonic stem cell lines by the International Stem Cell Initiative

Oluseun Adewumi; Behrouz Aflatoonian; Lars Ährlund-Richter; Michal Amit; Peter W. Andrews; Gemma Beighton; Paul Bello; Nissim Benvenisty; Lorraine S. Berry; Simon Bevan; Barak Blum; Justin Brooking; Kevin G. Chen; Andre Choo; Gary A. Churchill; Marie Corbel; Ivan Damjanov; John S Draper; Petr Dvorak; Katarina Emanuelsson; Roland A. Fleck; Angela Ford; Karin Gertow; Marina Gertsenstein; Paul J. Gokhale; Rebecca S. Hamilton; Alex Hampl; Lyn Healy; Outi Hovatta; Johan Hyllner

The International Stem Cell Initiative characterized 59 human embryonic stem cell lines from 17 laboratories worldwide. Despite diverse genotypes and different techniques used for derivation and maintenance, all lines exhibited similar expression patterns for several markers of human embryonic stem cells. They expressed the glycolipid antigens SSEA3 and SSEA4, the keratan sulfate antigens TRA-1-60, TRA-1-81, GCTM2 and GCT343, and the protein antigens CD9, Thy1 (also known as CD90), tissue-nonspecific alkaline phosphatase and class 1 HLA, as well as the strongly developmentally regulated genes NANOG, POU5F1 (formerly known as OCT4), TDGF1, DNMT3B, GABRB3 and GDF3. Nevertheless, the lines were not identical: differences in expression of several lineage markers were evident, and several imprinted genes showed generally similar allele-specific expression patterns, but some gene-dependent variation was observed. Also, some female lines expressed readily detectable levels of XIST whereas others did not. No significant contamination of the lines with mycoplasma, bacteria or cytopathic viruses was detected.


Nature | 2001

Functional annotation of a full-length mouse cDNA collection

Jun Kawai; Akira Shinagawa; Kazuhiro Shibata; Masataka Yoshino; Masayoshi Itoh; Yoshiyuki Ishii; Takahiro Arakawa; Ayako Hara; Yoshifumi Fukunishi; Hideaki Konno; Jun Adachi; Shiro Fukuda; Katsunori Aizawa; Masaki Izawa; Kenichiro Nishi; Hidenori Kiyosawa; Shinji Kondo; Itaru Yamanaka; Tsuyoshi Saito; Yasushi Okazaki; Takashi Gojobori; Hidemasa Bono; Takeya Kasukawa; R. Saito; Koji Kadota; Hideo Matsuda; Michael Ashburner; Serge Batalov; Tom L. Casavant; W. Fleischmann

The RIKEN Mouse Gene Encyclopaedia Project, a systematic approach to determining the full coding potential of the mouse genome, involves collection and sequencing of full-length complementary DNAs and physical mapping of the corresponding genes to the mouse genome. We organized an international functional annotation meeting (FANTOM) to annotate the first 21,076 cDNAs to be analysed in this project. Here we describe the first RIKEN clone collection, which is one of the largest described for any organism. Analysis of these cDNAs extends known gene families and identifies new ones.The RIKEN Mouse Gene Encyclopaedia Project, a systematic approach to determining the full coding potential of the mouse genome, involves collection and sequencing of full-length complementary DNAs and physical mapping of the corresponding genes to the mouse genome. We organized an international functional annotation meeting (FANTOM) to annotate the first 21,076 cDNAs to be analysed in this project. Here we describe the first RIKEN clone collection, which is one of the largest described for any organism. Analysis of these cDNAs extends known gene families and identifies new ones.


Nucleic Acids Research | 2011

The Comparative Toxicogenomics Database: update 2011

Allan Peter Davis; Benjamin L. King; Susan Mockus; Cynthia G. Murphy; Cynthia Saraceni-Richards; Michael T. Rosenstein; Thomas C. Wiegers; Carolyn J. Mattingly

The Comparative Toxicogenomics Database (CTD) is a public resource that promotes understanding about the interaction of environmental chemicals with gene products, and their effects on human health. Biocurators at CTD manually curate a triad of chemical–gene, chemical–disease and gene–disease relationships from the literature. These core data are then integrated to construct chemical–gene–disease networks and to predict many novel relationships using different types of associated data. Since 2009, we dramatically increased the content of CTD to 1.4 million chemical–gene–disease data points and added many features, statistical analyses and analytical tools, including GeneComps and ChemComps (to find comparable genes and chemicals that share toxicogenomic profiles), enriched Gene Ontology terms associated with chemicals, statistically ranked chemical–disease inferences, Venn diagram tools to discover overlapping and unique attributes of any set of chemicals, genes or disease, and enhanced gene pathway data content, among other features. Together, this wealth of expanded chemical–gene–disease data continues to help users generate testable hypotheses about the molecular mechanisms of environmental diseases. CTD is freely available at http://ctd.mdibl.org.


Nucleic Acids Research | 2015

The Comparative Toxicogenomics Database's 10th year anniversary: update 2015

Allan Peter Davis; Cynthia J. Grondin; Kelley Lennon-Hopkins; Cynthia Saraceni-Richards; Daniela Sciaky; Benjamin L. King; Thomas C. Wiegers; Carolyn J. Mattingly

Ten years ago, the Comparative Toxicogenomics Database (CTD; http://ctdbase.org/) was developed out of a need to formalize, harmonize and centralize the information on numerous genes and proteins responding to environmental toxic agents across diverse species. CTDs initial approach was to facilitate comparisons of nucleotide and protein sequences of toxicologically significant genes by curating these sequences and electronically annotating them with chemical terms from their associated references. Since then, however, CTD has vastly expanded its scope to robustly represent a triad of chemical–gene, chemical–disease and gene–disease interactions that are manually curated from the scientific literature by professional biocurators using controlled vocabularies, ontologies and structured notation. Today, CTD includes 24 million toxicogenomic connections relating chemicals/drugs, genes/proteins, diseases, taxa, phenotypes, Gene Ontology annotations, pathways and interaction modules. In this 10th year anniversary update, we outline the evolution of CTD, including our increased data content, new ‘Pathway View’ visualization tool, enhanced curation practices, pilot chemical–phenotype results and impending exposure data set. The prototype database originally described in our first report has transformed into a sophisticated resource used actively today to help scientists develop and test hypotheses about the etiologies of environmentally influenced diseases.


Journal of Clinical Investigation | 2011

Molecular clustering identifies complement and endothelin induction as early events in a mouse model of glaucoma

Gareth R. Howell; Danilo G. Macalinao; Gregory L. Sousa; Michael Walden; Ileana Soto; Stephen C. Kneeland; Jessica M. Barbay; Benjamin L. King; Jeffrey K. Marchant; Matthew A. Hibbs; Beth Stevens; Ben A. Barres; Abbot F. Clark; Richard T. Libby; Simon W. M. John

Glaucoma is one of the most common neurodegenerative diseases. Despite this, the earliest stages of this complex disease are still unclear. This study was specifically designed to identify early stages of glaucoma in DBA/2J mice. To do this, we used genome-wide expression profiling of optic nerve head and retina and a series of computational methods. Eyes with no detectable glaucoma by conventional assays were grouped into molecularly defined stages of disease using unbiased hierarchical clustering. These stages represent a temporally ordered sequence of glaucoma states. We then determined networks and biological processes that were altered at these early stages. Early-stage expression changes included upregulation of both the complement cascade and the endothelin system, and so we tested the therapeutic value of separately inhibiting them. Mice with a mutation in complement component 1a (C1qa) were protected from glaucoma. Similarly, inhibition of the endothelin system with bosentan, an endothelin receptor antagonist, was strongly protective against glaucomatous damage. Since endothelin 2 is potently vasoconstrictive and was produced by microglia/macrophages, our data provide what we believe to be a novel link between these cell types and vascular dysfunction in glaucoma. Targeting early molecular events, such as complement and endothelin induction, may provide effective new treatments for human glaucoma.


Annual Review of Genetics | 2015

A Uniform System for the Annotation of Vertebrate microRNA Genes and the Evolution of the Human microRNAome

Bastian Fromm; Tyler Billipp; Liam E. Peck; Morten Johansen; James E. Tarver; Benjamin L. King; James M. Newcomb; Lorenzo F. Sempere; Kjersti Flatmark; Eivind Hovig; Kevin J. Peterson

Although microRNAs (miRNAs) are among the most intensively studied molecules of the past 20 years, determining what is and what is not a miRNA has not been straightforward. Here, we present a uniform system for the annotation and nomenclature of miRNA genes. We show that less than a third of the 1,881 human miRBase entries, and only approximately 16% of the 7,095 metazoan miRBase entries, are robustly supported as miRNA genes. Furthermore, we show that the human repertoire of miRNAs has been shaped by periods of intense miRNA innovation and that mature gene products show a very different tempo and mode of sequence evolution than star products. We establish a new open access database--MirGeneDB ( http://mirgenedb.org )--to catalog this set of miRNAs, which complements the efforts of miRBase but differs from it by annotating the mature versus star products and by imposing an evolutionary hierarchy upon this curated and consistently named repertoire.


PLOS Genetics | 2005

Evidence of a Large-Scale Functional Organization of Mammalian Chromosomes

Petko M. Petkov; Joel H. Graber; Gary A. Churchill; Keith DiPetrillo; Benjamin L. King; Kenneth Paigen

Evidence from inbred strains of mice indicates that a quarter or more of the mammalian genome consists of chromosome regions containing clusters of functionally related genes. The intense selection pressures during inbreeding favor the coinheritance of optimal sets of alleles among these genetically linked, functionally related genes, resulting in extensive domains of linkage disequilibrium (LD) among a set of 60 genetically diverse inbred strains. Recombination that disrupts the preferred combinations of alleles reduces the ability of offspring to survive further inbreeding. LD is also seen between markers on separate chromosomes, forming networks with scale-free architecture. Combining LD data with pathway and genome annotation databases, we have been able to identify the biological functions underlying several domains and networks. Given the strong conservation of gene order among mammals, the domains and networks we find in mice probably characterize all mammals, including humans.


Molecular Biology and Evolution | 2013

miRNAs: Small Genes with Big Potential in Metazoan Phylogenetics

James E. Tarver; Erik A. Sperling; Audrey Nailor; Alysha M. Heimberg; Jeffrey M. Robinson; Benjamin L. King; Davide Pisani; Philip C. J. Donoghue; Kevin J. Peterson

microRNAs (miRNAs) are a key component of gene regulatory networks and have been implicated in the regulation of virtually every biological process found in multicellular eukaryotes. What makes them interesting from a phylogenetic perspective is the high conservation of primary sequence between taxa, their accrual in metazoan genomes through evolutionary time, and the rarity of secondary loss in most metazoan taxa. Despite these properties, the use of miRNAs as phylogenetic markers has not yet been discussed within a clear conceptual framework. Here we highlight five properties of miRNAs that underlie their utility in phylogenetics: 1) The processes of miRNA biogenesis enable the identification of novel miRNAs without prior knowledge of sequence; 2) The continuous addition of miRNA families to metazoan genomes through evolutionary time; 3) The low level of secondary gene loss in most metazoan taxa; 4) The low substitution rate in the mature miRNA sequence; and 5) The small probability of convergent evolution of two miRNAs. Phylogenetic analyses using both Bayesian and parsimony methods on a eumetazoan miRNA data set highlight the potential of miRNAs to become an invaluable new tool, especially when used as an additional line of evidence, to resolve previously intractable nodes within the tree of life.


Genome Biology and Evolution | 2016

The Interrelationships of Placental Mammals and the Limits of Phylogenetic Inference

James E. Tarver; Mario dos Reis; Siavash Mirarab; Raymond J. Moran; Sean Parker; Joseph E. O’Reilly; Benjamin L. King; Mary J. O’Connell; Robert J. Asher; Tandy J. Warnow; Kevin J. Peterson; Philip C. J. Donoghue; Davide Pisani

Placental mammals comprise three principal clades: Afrotheria (e.g., elephants and tenrecs), Xenarthra (e.g., armadillos and sloths), and Boreoeutheria (all other placental mammals), the relationships among which are the subject of controversy and a touchstone for debate on the limits of phylogenetic inference. Previous analyses have found support for all three hypotheses, leading some to conclude that this phylogenetic problem might be impossible to resolve due to the compounded effects of incomplete lineage sorting (ILS) and a rapid radiation. Here we show, using a genome scale nucleotide data set, microRNAs, and the reanalysis of the three largest previously published amino acid data sets, that the root of Placentalia lies between Atlantogenata and Boreoeutheria. Although we found evidence for ILS in early placental evolution, we are able to reject previous conclusions that the placental root is a hard polytomy that cannot be resolved. Reanalyses of previous data sets recover Atlantogenata + Boreoeutheria and show that contradictory results are a consequence of poorly fitting evolutionary models; instead, when the evolutionary process is better-modeled, all data sets converge on Atlantogenata. Our Bayesian molecular clock analysis estimates that marsupials diverged from placentals 157–170 Ma, crown Placentalia diverged 86–100 Ma, and crown Atlantogenata diverged 84–97 Ma. Our results are compatible with placental diversification being driven by dispersal rather than vicariance mechanisms, postdating early phases in the protracted opening of the Atlantic Ocean.


Database | 2013

A CTD–Pfizer collaboration: manual curation of 88 000 scientific articles text mined for drug–disease and drug–phenotype interactions

Allan Peter Davis; Thomas C. Wiegers; Phoebe M. Roberts; Benjamin L. King; Jean M. Lay; Kelley Lennon-Hopkins; Daniela Sciaky; Robin J. Johnson; Heather Keating; Nigel Greene; Robert Hernandez; Kevin J. McConnell; Ahmed Enayetallah; Carolyn J. Mattingly

Improving the prediction of chemical toxicity is a goal common to both environmental health research and pharmaceutical drug development. To improve safety detection assays, it is critical to have a reference set of molecules with well-defined toxicity annotations for training and validation purposes. Here, we describe a collaboration between safety researchers at Pfizer and the research team at the Comparative Toxicogenomics Database (CTD) to text mine and manually review a collection of 88 629 articles relating over 1 200 pharmaceutical drugs to their potential involvement in cardiovascular, neurological, renal and hepatic toxicity. In 1 year, CTD biocurators curated 2 54 173 toxicogenomic interactions (1 52 173 chemical–disease, 58 572 chemical–gene, 5 345 gene–disease and 38 083 phenotype interactions). All chemical–gene–disease interactions are fully integrated with public CTD, and phenotype interactions can be downloaded. We describe Pfizer’s text-mining process to collate the articles, and CTD’s curation strategy, performance metrics, enhanced data content and new module to curate phenotype information. As well, we show how data integration can connect phenotypes to diseases. This curation can be leveraged for information about toxic endpoints important to drug safety and help develop testable hypotheses for drug–disease events. The availability of these detailed, contextualized, high-quality annotations curated from seven decades’ worth of the scientific literature should help facilitate new mechanistic screening assays for pharmaceutical compound survival. This unique partnership demonstrates the importance of resource sharing and collaboration between public and private entities and underscores the complementary needs of the environmental health science and pharmaceutical communities. Database URL: http://ctdbase.org/

Collaboration


Dive into the Benjamin L. King's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Allan Peter Davis

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Carolyn J. Mattingly

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Thomas C. Wiegers

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Cynthia J. Grondin

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge