Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benjamin Leon Bodirsky is active.

Publication


Featured researches published by Benjamin Leon Bodirsky.


Nature Communications | 2014

Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution

Benjamin Leon Bodirsky; Alexander Popp; Hermann Lotze-Campen; Jan Philipp Dietrich; Susanne Rolinski; Isabelle Weindl; Christoph Schmitz; Christoph Müller; Markus Bonsch; Anne Biewald; Miodrag Stevanovic

Reactive nitrogen (Nr) is an indispensable nutrient for agricultural production and human alimentation. Simultaneously, agriculture is the largest contributor to Nr pollution, causing severe damages to human health and ecosystem services. The trade-off between food availability and Nr pollution can be attenuated by several key mitigation options, including Nr efficiency improvements in crop and animal production systems, food waste reduction in households and lower consumption of Nr-intensive animal products. However, their quantitative mitigation potential remains unclear, especially under the added pressure of population growth and changes in food consumption. Here we show by model simulations, that under baseline conditions, Nr pollution in 2050 can be expected to rise to 102-156% of the 2010 value. Only under ambitious mitigation, does pollution possibly decrease to 36-76% of the 2010 value. Air, water and atmospheric Nr pollution go far beyond critical environmental thresholds without mitigation actions. Even under ambitious mitigation, the risk remains that thresholds are exceeded.


Environmental Research Letters | 2015

Climate change impacts on agriculture in 2050 under a range of plausible socioeconomic and emissions scenarios

Keith Wiebe; Hermann Lotze-Campen; Ronald D. Sands; A.A. Tabeau; Dominique van der Mensbrugghe; Anne Biewald; Benjamin Leon Bodirsky; Shahnila Islam; Aikaterini Kavallari; Daniel Mason-D’Croz; Christoph Müller; Alexander Popp; Richard Robertson; Sherman Robinson; Hans van Meijl; Dirk Willenbockel

Previous studies have combined climate, crop and economic models to examine the impact of climate change on agricultural production and food security, but results have varied widely due to differences in models, scenarios and input data. Recent work has examined (and narrowed) these differences through systematic model intercomparison using a high-emissions pathway to highlight the differences. This paper extends that analysis to explore a range of plausible socioeconomic scenarios and emission pathways. Results from multiple climate and economic models are combined to examine the global and regional impacts of climate change on agricultural yields, area, production, consumption, prices and trade for coarse grains, rice, wheat, oilseeds and sugar crops to 2050. We find that climate impacts on global average yields, area, production and consumption are similar across shared socioeconomic pathways (SSP 1, 2 and 3, as we implement them based on population, income and productivity drivers), except when changes in trade policies are included. Impacts on trade and prices are higher for SSP 3 than SSP 2, and higher for SSP 2 than for SSP 1. Climate impacts for all variables are similar across low to moderate emissions pathways (RCP 4.5 and RCP 6.0), but increase for a higher emissions pathway (RCP 8.5). It is important to note that these global averages may hide regional variations. Projected reductions in agricultural yields due to climate change by 2050 are larger for some crops than those estimated for the past half century, but smaller than projected increases to 2050 due to rising demand and intrinsic productivity growth. Results illustrate the sensitivity of climate change impacts to differences in socioeconomic and emissions pathways. Yield impacts increase at high emissions levels and vary with changes in population, income and technology, but are reduced in all cases by endogenous changes in prices and other variables.


Environmental Research Letters | 2014

Investigating afforestation and bioenergy CCS as climate change mitigation strategies.

Alexander Popp; Jan Philipp Dietrich; David Klein; Hermann Lotze-Campen; Markus Bonsch; Benjamin Leon Bodirsky; Isabelle Weindl; Miodrag Stevanovic; Christoph Müller

The land-use sector can contribute to climate change mitigation not only by reducing greenhouse gas (GHG) emissions, but also by increasing carbon uptake from the atmosphere and thereby creating negative CO2 emissions. In this paper, we investigate two land-based climate change mitigation strategies for carbon removal: (1) afforestation and (2) bioenergy in combination with carbon capture and storage technology (bioenergy CCS). In our approach, a global tax on GHG emissions aimed at ambitious climate change mitigation incentivizes land-based mitigation by penalizing positive and rewarding negative CO2 emissions from the land-use system. We analyze afforestation and bioenergy CCS as standalone and combined mitigation strategies. We find that afforestation is a cost-efficient strategy for carbon removal at relatively low carbon prices, while bioenergy CCS becomes competitive only at higher prices. According to our results, cumulative carbon removal due to afforestation and bioenergy CCS is similar at the end of 21st century (600–700 GtCO2), while land-demand for afforestation is much higher compared to bioenergy CCS. In the combined setting, we identify competition for land, but the impact on the mitigation potential (1000 GtCO2) is partially alleviated by productivity increases in the agricultural sector. Moreover, our results indicate that early-century afforestation presumably will not negatively impact carbon removal due to bioenergy CCS in the second half of the 21st century. A sensitivity analysis shows that land-based mitigation is very sensitive to different levels of GHG taxes. Besides that, the mitigation potential of bioenergy CCS highly depends on the development of future bioenergy yields and the availability of geological carbon storage, while for afforestation projects the length of the crediting period is crucial.


Gcb Bioenergy | 2016

Trade‐offs between land and water requirements for large‐scale bioenergy production

Markus Bonsch; Alexander Popp; Benjamin Leon Bodirsky; Jan Philipp Dietrich; Susanne Rolinski; Anne Biewald; Hermann Lotze-Campen; Isabelle Weindl; Dieter Gerten; Miodrag Stevanovic

Bioenergy is expected to play an important role in the future energy mix as it can substitute fossil fuels and contribute to climate change mitigation. However, large‐scale bioenergy cultivation may put substantial pressure on land and water resources. While irrigated bioenergy production can reduce the pressure on land due to higher yields, associated irrigation water requirements may lead to degradation of freshwater ecosystems and to conflicts with other potential users. In this article, we investigate the trade‐offs between land and water requirements of large‐scale bioenergy production. To this end, we adopt an exogenous demand trajectory for bioenergy from dedicated energy crops, targeted at limiting greenhouse gas emissions in the energy sector to 1100 Gt carbon dioxide equivalent until 2095. We then use the spatially explicit global land‐ and water‐use allocation model MAgPIE to project the implications of this bioenergy target for global land and water resources. We find that producing 300 EJ yr−1 of bioenergy in 2095 from dedicated bioenergy crops is likely to double agricultural water withdrawals if no explicit water protection policies are implemented. Since current human water withdrawals are dominated by agriculture and already lead to ecosystem degradation and biodiversity loss, such a doubling will pose a severe threat to freshwater ecosystems. If irrigated bioenergy production is prohibited to prevent negative impacts of bioenergy cultivation on water resources, bioenergy land requirements for meeting a 300 EJ yr−1 bioenergy target increase substantially (+ 41%) – mainly at the expense of pasture areas and tropical forests. Thus, avoiding negative environmental impacts of large‐scale bioenergy production will require policies that balance associated water and land requirements.


PLOS ONE | 2015

Global food demand scenarios for the 21st century

Benjamin Leon Bodirsky; Susanne Rolinski; Anne Biewald; Isabelle Weindl; Alexander Popp; Hermann Lotze-Campen

Long-term food demand scenarios are an important tool for studying global food security and for analysing the environmental impacts of agriculture. We provide a simple and transparent method to create scenarios for future plant-based and animal-based calorie demand, using time-dependent regression models between calorie demand and income. The scenarios can be customized to a specific storyline by using different input data for gross domestic product (GDP) and population projections and by assuming different functional forms of the regressions. Our results confirm that total calorie demand increases with income, but we also found a non-income related positive time-trend. The share of animal-based calories is estimated to rise strongly with income for low-income groups. For high income groups, two ambiguous relations between income and the share of animal-based products are consistent with historical data: First, a positive relation with a strong negative time-trend and second a negative relation with a slight negative time-trend. The fits of our regressions are highly significant and our results compare well to other food demand estimates. The method is exemplarily used to construct four food demand scenarios until the year 2100 based on the storylines of the IPCC Special Report on Emissions Scenarios (SRES). We find in all scenarios a strong increase of global food demand until 2050 with an increasing share of animal-based products, especially in developing countries.


Environmental Science & Technology | 2015

Land-Use and Carbon Cycle Responses to Moderate Climate Change: Implications for Land-Based Mitigation?

Alexander Popp; Miodrag Stevanovic; Christoph Müller; Benjamin Leon Bodirsky; Markus Bonsch; Jan Philipp Dietrich; Hermann Lotze-Campen; Isabelle Weindl; Anne Biewald; Susanne Rolinski

Climate change has impacts on agricultural yields, which could alter cropland requirements and hence deforestation rates. Thus, land-use responses to climate change might influence terrestrial carbon stocks. Moreover, climate change could alter the carbon storage capacity of the terrestrial biosphere and hence the land-based mitigation potential. We use a global spatially explicit economic land-use optimization model to (a) estimate the mitigation potential of a climate policy that provides economic incentives for carbon stock conservation and enhancement, (b) simulate land-use and carbon cycle responses to moderate climate change (RCP2.6), and (c) investigate the combined effects throughout the 21st century. The climate policy immediately stops deforestation and strongly increases afforestation, resulting in a global mitigation potential of 191 GtC in 2100. Climate change increases terrestrial carbon stocks not only directly through enhanced carbon sequestration (62 GtC by 2100) but also indirectly through less deforestation due to higher crop yields (16 GtC by 2100). However, such beneficial climate impacts increase the potential of the climate policy only marginally, as the potential is already large under static climatic conditions. In the broader picture, this study highlights the importance of land-use dynamics for modeling carbon cycle responses to climate change in integrated assessment modeling.


Environmental Research Letters | 2014

The global economic long-term potential of modern biomass in a climate-constrained world

David Klein; Nico Bauer; Jan Philipp Dietrich; Alexander Popp; Benjamin Leon Bodirsky; Markus Bonsch; Hermann Lotze-Campen

Low-stabilization scenarios consistent with the 2 °C target project large-scale deployment of purpose-grown lignocellulosic biomass. In case a GHG price regime integrates emissions from energy conversion and from land-use/land-use change, the strong demand for bioenergy and the pricing of terrestrial emissions are likely to coincide. We explore the global potential of purpose-grown lignocellulosic biomass and ask the question how the supply prices of biomass depend on prices for greenhouse gas (GHG) emissions from the land-use sector. Using the spatially explicit global land-use optimization model MAgPIE, we construct bioenergy supply curves for ten world regions and a global aggregate in two scenarios, with and without a GHG tax. We find that the implementation of GHG taxes is crucial for the slope of the supply function and the GHG emissions from the land-use sector. Global supply prices start at


Environmental Research Letters | 2016

Afforestation to mitigate climate change: impacts on food prices under consideration of albedo effects

Ulrich Kreidenweis; Miodrag Stevanovic; Benjamin Leon Bodirsky; Elmar Kriegler; Hermann Lotze-Campen; Alexander Popp

5 GJ−1 and increase almost linearly, doubling at 150 EJ (in 2055 and 2095). The GHG tax increases bioenergy prices by


Environmental Research Letters | 2014

Robust relationship between yields and nitrogen inputs indicates three ways to reduce nitrogen pollution

Benjamin Leon Bodirsky; Christoph Müller

5 GJ−1 in 2055 and by


Science Advances | 2016

The impact of high-end climate change on agricultural welfare

Miodrag Stevanovic; Alexander Popp; Hermann Lotze-Campen; Jan Philipp Dietrich; Christoph Müller; Markus Bonsch; Christoph Schmitz; Benjamin Leon Bodirsky; Isabelle Weindl

10 GJ−1 in 2095, since it effectively stops deforestation and thus excludes large amounts of high-productivity land. Prices additionally increase due to costs for N2O emissions from fertilizer use. The GHG tax decreases global land-use change emissions by one-third. However, the carbon emissions due to bioenergy production increase by more than 50% from conversion of land that is not under emission control. Average yields required to produce 240 EJ in 2095 are roughly 600 GJ ha−1 yr−1 with and without tax.

Collaboration


Dive into the Benjamin Leon Bodirsky's collaboration.

Top Co-Authors

Avatar

Alexander Popp

Potsdam Institute for Climate Impact Research

View shared research outputs
Top Co-Authors

Avatar

Hermann Lotze-Campen

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Isabelle Weindl

Potsdam Institute for Climate Impact Research

View shared research outputs
Top Co-Authors

Avatar

Jan Philipp Dietrich

Potsdam Institute for Climate Impact Research

View shared research outputs
Top Co-Authors

Avatar

Anne Biewald

Potsdam Institute for Climate Impact Research

View shared research outputs
Top Co-Authors

Avatar

Susanne Rolinski

Potsdam Institute for Climate Impact Research

View shared research outputs
Top Co-Authors

Avatar

Christoph Müller

Potsdam Institute for Climate Impact Research

View shared research outputs
Top Co-Authors

Avatar

Miodrag Stevanovic

Potsdam Institute for Climate Impact Research

View shared research outputs
Top Co-Authors

Avatar

Markus Bonsch

Potsdam Institute for Climate Impact Research

View shared research outputs
Top Co-Authors

Avatar

Elke Stehfest

Netherlands Environmental Assessment Agency

View shared research outputs
Researchain Logo
Decentralizing Knowledge