Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benjamin M. Nitsche is active.

Publication


Featured researches published by Benjamin M. Nitsche.


BMC Genomics | 2012

The carbon starvation response of Aspergillus niger during submerged cultivation: Insights from the transcriptome and secretome

Benjamin M. Nitsche; Thomas R. Jørgensen; Michiel Akeroyd; Vera Meyer; Arthur F.J. Ram

BackgroundFilamentous fungi are confronted with changes and limitations of their carbon source during growth in their natural habitats and during industrial applications. To survive life-threatening starvation conditions, carbon from endogenous resources becomes mobilized to fuel maintenance and self-propagation. Key to understand the underlying cellular processes is the system-wide analysis of fungal starvation responses in a temporal and spatial resolution. The knowledge deduced is important for the development of optimized industrial production processes.ResultsThis study describes the physiological, morphological and genome-wide transcriptional changes caused by prolonged carbon starvation during submerged batch cultivation of the filamentous fungus Aspergillus niger. Bioreactor cultivation supported highly reproducible growth conditions and monitoring of physiological parameters. Changes in hyphal growth and morphology were analyzed at distinct cultivation phases using automated image analysis. The Affymetrix GeneChip platform was used to establish genome-wide transcriptional profiles for three selected time points during prolonged carbon starvation. Compared to the exponential growth transcriptome, about 50% (7,292) of all genes displayed differential gene expression during at least one of the starvation time points. Enrichment analysis of Gene Ontology, Pfam domain and KEGG pathway annotations uncovered autophagy and asexual reproduction as major global transcriptional trends. Induced transcription of genes encoding hydrolytic enzymes was accompanied by increased secretion of hydrolases including chitinases, glucanases, proteases and phospholipases as identified by mass spectrometry.ConclusionsThis study is the first system-wide analysis of the carbon starvation response in a filamentous fungus. Morphological, transcriptomic and secretomic analyses identified key events important for fungal survival and their chronology. The dataset obtained forms a comprehensive framework for further elucidation of the interrelation and interplay of the individual cellular events involved.


Applied and Environmental Microbiology | 2010

Transcriptomic Insights into the Physiology of Aspergillus niger Approaching a Specific Growth Rate of Zero

Thomas R. Jørgensen; Benjamin M. Nitsche; Gerda E. M. Lamers; Mark Arentshorst; Cees A. M. J. J. van den Hondel; Arthur F. J. Ram

ABSTRACT The physiology of filamentous fungi at growth rates approaching zero has been subject to limited study and exploitation. With the aim of uncoupling product formation from growth, we have revisited and improved the retentostat cultivation method for Aspergillus niger. A new retention device was designed allowing reliable and nearly complete cell retention even at high flow rates. Transcriptomic analysis was used to explore the potential for product formation at very low specific growth rates. The carbon- and energy-limited retentostat cultures were highly reproducible. While the specific growth rate approached zero (<0.005 h−1), the growth yield stabilized at a minimum (0.20 g of dry weight per g of maltose). The severe limitation led to asexual differentiation, and the supplied substrate was used for spore formation and secondary metabolism. Three physiologically distinct phases of the retentostat cultures were subjected to genome-wide transcriptomic analysis. The severe substrate limitation and sporulation were clearly reflected in the transcriptome. The transition from vegetative to reproductive growth was characterized by downregulation of genes encoding secreted substrate hydrolases and cell cycle genes and upregulation of many genes encoding secreted small cysteine-rich proteins and secondary metabolism genes. Transcription of known secretory pathway genes suggests that A. niger becomes adapted to secretion of small cysteine-rich proteins. The perspective is that A. niger cultures as they approach a zero growth rate can be used as a cell factory for production of secondary metabolites and cysteine-rich proteins. We propose that the improved retentostat method can be used in fundamental studies of differentiation and is applicable to filamentous fungi in general.


Eukaryotic Cell | 2009

Reconstruction of Signaling Networks Regulating Fungal Morphogenesis by Transcriptomics

Vera Meyer; Mark Arentshorst; Simon J. Flitter; Benjamin M. Nitsche; Min Jin Kwon; Cristina G. Reynaga-Peña; Salomon Bartnicki-Garcia; Cees A. M. J. J. van den Hondel; Arthur F. J. Ram

ABSTRACT Coordinated control of hyphal elongation and branching is essential for sustaining mycelial growth of filamentous fungi. In order to study the molecular machinery ensuring polarity control in the industrial fungus Aspergillus niger, we took advantage of the temperature-sensitive (ts) apical-branching ramosa-1 mutant. We show here that this strain serves as an excellent model system to study critical steps of polar growth control during mycelial development and report for the first time a transcriptomic fingerprint of apical branching for a filamentous fungus. This fingerprint indicates that several signal transduction pathways, including TORC2, phospholipid, calcium, and cell wall integrity signaling, concertedly act to control apical branching. We furthermore identified the genetic locus affected in the ramosa-1 mutant by complementation of the ts phenotype. Sequence analyses demonstrated that a single amino acid exchange in the RmsA protein is responsible for induced apical branching of the ramosa-1 mutant. Deletion experiments showed that the corresponding rmsA gene is essential for the growth of A. niger, and complementation analyses with Saccharomyces cerevisiae evidenced that RmsA serves as a functional equivalent of the TORC2 component Avo1p. TORC2 signaling is required for actin polarization and cell wall integrity in S. cerevisiae. Congruently, our microscopic investigations showed that polarized actin organization and chitin deposition are disturbed in the ramosa-1 mutant. The integration of the transcriptomic, genetic, and phenotypic data obtained in this study allowed us to reconstruct a model for cellular events involved in apical branching.


BMC Genomics | 2012

Genome-wide expression analysis upon constitutive activation of the HacA bZIP transcription factor in Aspergillus niger reveals a coordinated cellular response to counteract ER stress

Neuza D. S. P. Carvalho; Thomas R. Jørgensen; Mark Arentshorst; Benjamin M. Nitsche; Cees A. M. J. J. van den Hondel; David B. Archer; Arthur F. J. Ram

BackgroundHacA/Xbp1 is a conserved bZIP transcription factor in eukaryotic cells which regulates gene expression in response to various forms of secretion stress and as part of secretory cell differentiation. In the present study, we replaced the endogenous hacA gene of an Aspergillus niger strain with a gene encoding a constitutively active form of the HacA transcription factor (HacACA). The impact of constitutive HacA activity during exponential growth was explored in bioreactor controlled cultures using transcriptomic analysis to identify affected genes and processes.ResultsTranscription profiles for the wild-type strain (HacAWT) and the HacACA strain were obtained using Affymetrix GeneChip analysis of three replicate batch cultures of each strain. In addition to the well known HacA targets such as the ER resident foldases and chaperones, GO enrichment analysis revealed up-regulation of genes involved in protein glycosylation, phospholipid biosynthesis, intracellular protein transport, exocytosis and protein complex assembly in the HacACA mutant. Biological processes over-represented in the down-regulated genes include those belonging to central metabolic pathways, translation and transcription. A remarkable transcriptional response in the HacACA strain was the down-regulation of the AmyR transcription factor and its target genes.ConclusionsThe results indicate that the constitutive activation of the HacA leads to a coordinated regulation of the folding and secretion capacity of the cell, but with consequences on growth and fungal physiology to reduce secretion stress.


Applied Microbiology and Biotechnology | 2013

Autophagy promotes survival in aging submerged cultures of the filamentous fungus Aspergillus niger

Benjamin M. Nitsche; Anne-Marie Burggraaf-van Welzen; Gerda E. M. Lamers; Vera Meyer; Arthur F. J. Ram

Autophagy is a well-conserved catabolic process constitutively active in eukaryotes that is involved in maintaining cellular homeostasis by the targeting of cytoplasmic content and organelles to vacuoles. Autophagy is strongly induced by the limitation of nutrients including carbon, nitrogen, and oxygen and is clearly associated with cell death. It has been demonstrated that the accumulation of empty hyphal compartments and cryptic growth in carbon-starved submerged cultures of the filamentous fungus Aspergillus niger is accompanied by a joint transcriptional induction of autophagy genes. This study examines the role of autophagy by deleting the atg1, atg8, and atg17 orthologs in A. niger and phenotypically analyzing the deletion mutants in surface and submerged cultures. The results indicate that atg1 and atg8 are essential for efficient autophagy, whereas deletion of atg17 has little to no effect on autophagy in A. niger. Depending on the kind of oxidative stress confronted with, autophagy deficiency renders A. niger either more resistant (menadione) or more sensitive (H2O2) to oxidative stress. Fluorescence microscopy showed that mitochondrial turnover upon carbon depletion in submerged cultures is severely blocked in autophagy-impaired A. niger mutants. Furthermore, automated image analysis demonstrated that autophagy promotes survival in maintained carbon-starved cultures of A. niger. Taken together, the results suggest that besides its function in nutrient recycling, autophagy plays important roles in physiological adaptation by organelle turnover and protection against cell death upon carbon depletion in submerged cultures.


BMC Genomics | 2011

New resources for functional analysis of omics data for the genus Aspergillus

Benjamin M. Nitsche; Jonathan Crabtree; Gustavo C. Cerqueira; Vera Meyer; Arthur F.J. Ram; Jennifer R. Wortman

BackgroundDetailed and comprehensive genome annotation can be considered a prerequisite for effective analysis and interpretation of omics data. As such, Gene Ontology (GO) annotation has become a well accepted framework for functional annotation. The genus Aspergillus comprises fungal species that are important model organisms, plant and human pathogens as well as industrial workhorses. However, GO annotation based on both computational predictions and extended manual curation has so far only been available for one of its species, namely A. nidulans.ResultsBased on protein homology, we mapped 97% of the 3,498 GO annotated A. nidulans genes to at least one of seven other Aspergillus species: A. niger, A. fumigatus, A. flavus, A. clavatus, A. terreus, A. oryzae and Neosartorya fischeri. GO annotation files compatible with diverse publicly available tools have been generated and deposited online. To further improve their accessibility, we developed a web application for GO enrichment analysis named FetGOat and integrated GO annotations for all Aspergillus species with public genome sequences. Both the annotation files and the web application FetGOat are accessible via the Broad Institutes website (http://www.broadinstitute.org/fetgoat/index.html). To demonstrate the value of those new resources for functional analysis of omics data for the genus Aspergillus, we performed two case studies analyzing microarray data recently published for A. nidulans, A. niger and A. oryzae.ConclusionsWe mapped A. nidulans GO annotation to seven other Aspergilli. By depositing the newly mapped GO annotation online as well as integrating it into the web tool FetGOat, we provide new, valuable and easily accessible resources for omics data analysis and interpretation for the genus Aspergillus. Furthermore, we have given a general example of how a well annotated genome can help improving GO annotation of related species to subsequently facilitate the interpretation of omics data.


BMC Genomics | 2012

The transcriptomic fingerprint of glucoamylase over-expression in Aspergillus niger

Min Jin Kwon; Thomas R. Jørgensen; Benjamin M. Nitsche; Mark Arentshorst; Joohae Park; Arthur F. J. Ram; Vera Meyer

BackgroundFilamentous fungi such as Aspergillus niger are well known for their exceptionally high capacity for secretion of proteins, organic acids, and secondary metabolites and they are therefore used in biotechnology as versatile microbial production platforms. However, system-wide insights into their metabolic and secretory capacities are sparse and rational strain improvement approaches are therefore limited. In order to gain a genome-wide view on the transcriptional regulation of the protein secretory pathway of A. niger, we investigated the transcriptome of A. niger when it was forced to overexpression the glaA gene (encoding glucoamylase, GlaA) and secrete GlaA to high level.ResultsAn A. niger wild-type strain and a GlaA over-expressing strain, containing multiple copies of the glaA gene, were cultivated under maltose-limited chemostat conditions (specific growth rate 0.1 h-1). Elevated glaA mRNA and extracellular GlaA levels in the over-expressing strain were accompanied by elevated transcript levels from 772 genes and lowered transcript levels from 815 genes when compared to the wild-type strain. Using GO term enrichment analysis, four higher-order categories were identified in the up-regulated gene set: i) endoplasmic reticulum (ER) membrane translocation, ii) protein glycosylation, iii) vesicle transport, and iv) ion homeostasis. Among these, about 130 genes had predicted functions for the passage of proteins through the ER and those genes included target genes of the HacA transcription factor that mediates the unfolded protein response (UPR), e.g. bipA, clxA, prpA, tigA and pdiA. In order to identify those genes that are important for high-level secretion of proteins by A. niger, we compared the transcriptome of the GlaA overexpression strain of A. niger with six other relevant transcriptomes of A. niger. Overall, 40 genes were found to have either elevated (from 36 genes) or lowered (from 4 genes) transcript levels under all conditions that were examined, thus defining the core set of genes important for ensuring high protein traffic through the secretory pathway.ConclusionWe have defined the A. niger genes that respond to elevated secretion of GlaA and, furthermore, we have defined a core set of genes that appear to be involved more generally in the intensified traffic of proteins through the secretory pathway of A. niger. The consistent up-regulation of a gene encoding the acetyl-coenzyme A transporter suggests a possible role for transient acetylation to ensure correct folding of secreted proteins.


Advances in Biochemical Engineering \/ Biotechnology | 2015

The Cell Factory Aspergillus Enters the Big Data Era: Opportunities and Challenges for Optimising Product Formation

Vera Meyer; Markus R. M. Fiedler; Benjamin M. Nitsche; Rudibert King

Living with limits. Getting more from less. Producing commodities and high-value products from renewable resources including waste. What is the driving force and quintessence of bioeconomy outlines the lifestyle and product portfolio of Aspergillus, a saprophytic genus, to which some of the top-performing microbial cell factories belong: Aspergillus niger, Aspergillus oryzae and Aspergillus terreus. What makes them so interesting for exploitation in biotechnology and how can they help us to address key challenges of the twenty-first century? How can these strains become trimmed for better growth on second-generation feedstocks and how can we enlarge their product portfolio by genetic and metabolic engineering to get more from less? On the other hand, what makes it so challenging to deduce biological meaning from the wealth of Aspergillus -omics data? And which hurdles hinder us to model and engineer industrial strains for higher productivity and better rheological performance under industrial cultivation conditions? In this review, we will address these issues by highlighting most recent findings from the Aspergillus research with a focus on fungal growth, physiology, morphology and product formation. Indeed, the last years brought us many surprising insights into model and industrial strains. They clearly told us that similar is not the same: there are different ways to make a hypha, there are more protein secretion routes than anticipated and there are different molecular and physical mechanisms which control polar growth and the development of hyphal networks. We will discuss new conceptual frameworks derived from these insights and the future scientific advances necessary to create value from Aspergillus Big Data.


PLOS ONE | 2015

Systems Approaches to Predict the Functions of Glycoside Hydrolases during the Life Cycle of Aspergillus niger Using Developmental Mutants ∆brlA and ∆flbA

Jolanda M. van Munster; Benjamin M. Nitsche; Michiel Akeroyd; Lubbert Dijkhuizen; Marc J. E. C. van der Maarel; Arthur F.J. Ram

Background The filamentous fungus Aspergillus niger encounters carbon starvation in nature as well as during industrial fermentations. In response, regulatory networks initiate and control autolysis and sporulation. Carbohydrate-active enzymes play an important role in these processes, for example by modifying cell walls during spore cell wall biogenesis or in cell wall degradation connected to autolysis. Results In this study, we used developmental mutants (ΔflbA and ΔbrlA) which are characterized by an aconidial phenotype when grown on a plate, but also in bioreactor-controlled submerged cultivations during carbon starvation. By comparing the transcriptomes, proteomes, enzyme activities and the fungal cell wall compositions of a wild type A. niger strain and these developmental mutants during carbon starvation, a global overview of the function of carbohydrate-active enzymes is provided. Seven genes encoding carbohydrate-active enzymes, including cfcA, were expressed during starvation in all strains; they may encode enzymes involved in cell wall recycling. Genes expressed in the wild-type during starvation, but not in the developmental mutants are likely involved in conidiogenesis. Eighteen of such genes were identified, including characterized sporulation-specific chitinases and An15g02350, member of the recently identified carbohydrate-active enzyme family AA11. Eight of the eighteen genes were also expressed, independent of FlbA or BrlA, in vegetative mycelium, indicating that they also have a role during vegetative growth. The ΔflbA strain had a reduced specific growth rate, an increased chitin content of the cell wall and specific expression of genes that are induced in response to cell wall stress, indicating that integrity of the cell wall of strain ΔflbA is reduced. Conclusion The combination of the developmental mutants ΔflbA and ΔbrlA resulted in the identification of enzymes involved in cell wall recycling and sporulation-specific cell wall modification, which contributes to understanding cell wall remodeling mechanisms during development.


Microbiology | 2013

Chitinases CtcB and CfcI modify the cell wall in sporulating aerial mycelium of Aspergillus niger.

Jolanda M. van Munster; Benjamin M. Nitsche; Pauline Krijgsheld; Alle van Wijk; Lubbert Dijkhuizen; Han A. B. Wösten; Arthur F. J. Ram; Marc J. E. C. van der Maarel

Sporulation is an essential part of the life cycle of the industrially important filamentous fungus Aspergillus niger. The formation of conidiophores, spore-bearing structures, requires remodelling of the fungal cell wall, as demonstrated by the differences in carbohydrate composition of cell walls of vegetative mycelium and spores. Glycoside hydrolases that are involved in this process have so far remained unidentified. Using transcriptome analysis, we have identified genes encoding putative cell-wall-modifying proteins with enhanced expression in sporulating aerial mycelium compared to vegetative mycelium. Among the most strongly induced genes were those encoding a protein consisting of a putative chitin binding module (CBM14) and the chitinolytic enzymes NagA, CfcI and CtcB. Reporter studies showed that the N-acetyl-β-hexosaminidase gene nagA was expressed both in vegetative hyphae and in aerial structures (aerial hyphae, conidiophores and conidia) upon starvation. In contrast, promoter activities of the chitinase genes ctcB and cfcI were specifically localized in the conidiophores and conidia. CtcB is an endo-chitinase and CfcI releases monomers from chitin oligosaccharides: together these enzymes have the potential to degrade chitin of the fungal cell wall. Inactivation of both the cfcI and ctcB genes affected neither radial growth rate, nor formation and germination of spores. The amount of chitin in the spore walls of a ΔcfcIΔctcB double deletion strain, however, was significantly increased compared with the wild-type, thus indicating that CfcI and CtcB indeed modify the A. niger cell walls during sporulation. These novel insights in the sporulation process in aspergilli are of strong scientific relevance, and also may aid industrial strain engineering.

Collaboration


Dive into the Benjamin M. Nitsche's collaboration.

Top Co-Authors

Avatar

Vera Meyer

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Min Jin Kwon

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Markus R. M. Fiedler

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge