Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benjamin Mänz is active.

Publication


Featured researches published by Benjamin Mänz.


Journal of Virology | 2013

Adaptation of Avian Influenza A Virus Polymerase in Mammals To Overcome the Host Species Barrier

Benjamin Mänz; Martin Schwemmle; Linda Brunotte

ABSTRACT Avian influenza A viruses, such as the highly pathogenic avian H5N1 viruses, sporadically enter the human population but often do not transmit between individuals. In rare cases, however, they establish a new lineage in humans. In addition to well-characterized barriers to cell entry, one major hurdle which avian viruses must overcome is their poor polymerase activity in human cells. There is compelling evidence that these viruses overcome this obstacle by acquiring adaptive mutations in the polymerase subunits PB1, PB2, and PA and the nucleoprotein (NP) as well as in the novel polymerase cofactor nuclear export protein (NEP). Recent findings suggest that synthesis of the viral genome may represent the major defect of avian polymerases in human cells. While the precise mechanisms remain to be unveiled, it appears that a broad spectrum of polymerase adaptive mutations can act collectively to overcome this defect. Thus, identification and monitoring of emerging adaptive mutations that further increase polymerase activity in human cells are critical to estimate the pandemic potential of avian viruses.


Journal of Virology | 2011

The viral nucleoprotein determines Mx sensitivity of influenza A viruses

Petra Zimmermann; Benjamin Mänz; Otto Haller; Martin Schwemmle; Georg Kochs

ABSTRACT Host restriction factors play a crucial role in preventing trans-species transmission of viral pathogens. In mammals, the interferon-induced Mx GTPases are powerful antiviral proteins restricting orthomyxoviruses. Hence, the human MxA GTPase may function as an efficient barrier against zoonotic introduction of influenza A viruses into the human population. Successful viruses are likely to acquire adaptive mutations allowing them to evade MxA restriction. We compared the 2009 pandemic influenza A virus [strain A/Hamburg/4/09 (pH1N1)] with a highly pathogenic avian H5N1 isolate [strain A/Thailand/1(KAN-1)/04] for their relative sensitivities to human MxA and murine Mx1. The H5N1 virus was highly sensitive to both Mx GTPases, whereas the pandemic H1N1 virus was almost insensitive. Substitutions of the viral polymerase subunits or the nucleoprotein (NP) in a polymerase reconstitution assay demonstrated that NP was the main determinant of Mx sensitivity. The NP of H5N1 conferred Mx sensitivity to the pandemic H1N1 polymerase, whereas the NP of pandemic H1N1 rendered the H5N1 polymerase insensitive. Reassortant viruses which expressed the NP of H5N1 in a pH1N1 genetic background and vice versa were generated. Congenic Mx1-positive mice survived intranasal infection with these reassortants if the challenge virus contained the avian NP. In contrast, they succumbed to infection if the NP of pH1N1 origin was present. These findings clearly indicate that the origin of NP determines Mx sensitivity and that human influenza viruses acquired adaptive mutations to evade MxA restriction. This also explains our previous observations that human and avian influenza A viruses differ in their sensitivities to Mx.


Nature Communications | 2012

Adaptive mutations in NEP compensate for defective H5N1 RNA replication in cultured human cells

Benjamin Mänz; Linda Brunotte; Peter Reuther; Martin Schwemmle

Infection of mammals by avian influenza viruses requires adaptive mutations to achieve high-level replication in the new host. However, the basic mechanism underlying this adaptation process is still unknown. Here we show that avian polymerases, lacking the human signature PB2-E627K, are incapable of generating usable complementary RNA templates in cultured human cells and therefore require adaptation. Characterization of the highly pathogenic human H5N1 isolate A/Thailand/1(KAN-1)/2004 that retained the avian PB2-E627 reveals that the defect in RNA replication is only partially compensated by mutations in the polymerase. Instead, mutations in the nuclear export protein are required for efficient polymerase activity. We demonstrate that adaptive mutations in nuclear export proteins of several human isolates enhance the polymerase activity of avian polymerases in human cultured cells. In conclusion, when crossing the species barrier, avian influenza viruses acquire adaptive mutations in nuclear export protein to escape restricted viral genome replication in mammalian cells.


PLOS Pathogens | 2013

Pandemic Influenza A Viruses Escape from Restriction by Human MxA through Adaptive Mutations in the Nucleoprotein

Benjamin Mänz; Dominik Dornfeld; Veronika Götz; Roland Zell; Petra Zimmermann; Otto Haller; Georg Kochs; Martin Schwemmle

The interferon-induced dynamin-like MxA GTPase restricts the replication of influenza A viruses. We identified adaptive mutations in the nucleoprotein (NP) of pandemic strains A/Brevig Mission/1/1918 (1918) and A/Hamburg/4/2009 (pH1N1) that confer MxA resistance. These resistance-associated amino acids in NP differ between the two strains but form a similar discrete surface-exposed cluster in the body domain of NP, indicating that MxA resistance evolved independently. The 1918 cluster was conserved in all descendent strains of seasonal influenza viruses. Introduction of this cluster into the NP of the MxA-sensitive influenza virus A/Thailand/1(KAN-1)/04 (H5N1) resulted in a gain of MxA resistance coupled with a decrease in viral replication fitness. Conversely, introduction of MxA-sensitive amino acids into pH1N1 NP enhanced viral growth in Mx-negative cells. We conclude that human MxA represents a barrier against zoonotic introduction of avian influenza viruses and that adaptive mutations in the viral NP should be carefully monitored.


PLOS ONE | 2009

Identification of a PA-Binding Peptide with Inhibitory Activity against Influenza A and B Virus Replication

Kerstin Wunderlich; Daniel Mayer; Charlene Ranadheera; Anne-Sophie Holler; Benjamin Mänz; Arnold Martin; Geoffrey Chase; Werner Tegge; Ronald Frank; Ulrich Kessler; Martin Schwemmle

There is an urgent need for new drugs against influenza type A and B viruses due to incomplete protection by vaccines and the emergence of resistance to current antivirals. The influenza virus polymerase complex, consisting of the PB1, PB2 and PA subunits, represents a promising target for the development of new drugs. We have previously demonstrated the feasibility of targeting the protein-protein interaction domain between the PB1 and PA subunits of the polymerase complex of influenza A virus using a small peptide derived from the PA-binding domain of PB1. However, this influenza A virus-derived peptide did not affect influenza B virus polymerase activity. Here we report that the PA-binding domain of the polymerase subunit PB1 of influenza A and B viruses is highly conserved and that mutual amino acid exchange shows that they cannot be functionally exchanged with each other. Based on phylogenetic analysis and a novel biochemical ELISA-based screening approach, we were able to identify an influenza A-derived peptide with a single influenza B-specific amino acid substitution which efficiently binds to PA of both virus types. This dual-binding peptide blocked the viral polymerase activity and growth of both virus types. Our findings provide proof of principle that protein-protein interaction inhibitors can be generated against influenza A and B viruses. Furthermore, this dual-binding peptide, combined with our novel screening method, is a promising platform to identify new antiviral lead compounds.


Journal of Virology | 2011

Reversion of PB2-627E to -627K during Replication of an H5N1 Clade 2.2 Virus in Mammalian Hosts Depends on the Origin of the Nucleoprotein

Jessica Bogs; Donata Kalthoff; Jutta Veits; Sophia P. Pavlova; Martin Schwemmle; Benjamin Mänz; Thomas C. Mettenleiter; Jürgen Stech

ABSTRACT H5N1 highly pathogenic avian influenza viruses (HPAIV) of clade 2.2 spread from Southeast Asia to Europe. Intriguingly, in contrast to all common avian strains specifying glutamic acid at position 627 of the PB2 protein (PB2-627E), they carry a lysine at this position (PB2-627K), which is normally found only in human strains. To analyze the impact of this mutation on the host range of HPAIV H5N1, we altered PB2-627K to PB2-627E in the European isolate A/Swan/Germany/R65/2006 (R65). In contrast to the parental R65, multicycle growth and polymerase activity of the resulting mutant R65-PB2K627E were considerably impaired in mammalian but not in avian cells. Correspondingly, the 50% lethal dose (LD50) in mice was increased by three orders of magnitude, whereas virulence in chicken remained unchanged, resulting in 100% lethality, as was found for the parental R65. Strikingly, R65-PB2K627E reverted to PB2-627K after only one passage in mice but did not revert in chickens. To investigate whether additional R65 genes influence reversion, we passaged R65-PB2K627E reassortants containing genes from A/Hong Kong/156/97 (H5N1) (carrying PB2-627E), in avian and mammalian cells. Reversion to PB2-627K in mammalian cells required the presence of the R65 nucleoprotein (NP). This finding corresponds to results of others that during replication of avian strains in mammalian cells, PB2-627K restores an impaired PB2-NP association. Since this mutation is apparently not detrimental for virus prevalence in birds, it has not been eliminated. However, the prompt reversion to PB2-627K in MDCK cells and mice suggests that the clade 2.2 H5N1 HPAIV may have had a history of intermediate mammalian hosts.


Journal of Biological Chemistry | 2011

Disruption of the Viral Polymerase Complex Assembly as a Novel Approach to Attenuate Influenza A Virus

Benjamin Mänz; Veronika Götz; Kerstin Wunderlich; Jessica Eisel; Johannes Kirchmair; Jürgen Stech; Olga Stech; Geoffrey Chase; Ronald Frank; Martin Schwemmle

To develop a novel attenuation strategy applicable to all influenza A viruses, we targeted the highly conserved protein-protein interaction of the viral polymerase subunits PA and PB1. We postulated that impaired binding between PA and PB1 would negatively affect trimeric polymerase complex formation, leading to reduced viral replication efficiency in vivo. As proof of concept, we introduced single or multiple amino acid substitutions into the protein-protein-binding domains of either PB1 or PA, or both, to decrease binding affinity and polymerase activity substantially. As expected, upon generation of recombinant influenza A viruses (SC35M strain) containing these mutations, many pseudo-revertants appeared that partially restored PA-PB1 binding and polymerase activity. These polymerase assembly mutants displayed drastic attenuation in cell culture and mice. The attenuation of the polymerase assembly mutants was maintained in IFNα/β receptor knock-out mice. As exemplified using a H5N1 polymerase assembly mutant, this attenuation strategy can be also applied to other highly pathogenic influenza A virus strains. Thus, we provide proof of principle that targeted mutation of the highly conserved interaction domains of PA and PB1 represents a novel strategy to attenuate influenza A viruses.


Journal of Virology | 2015

The nucleoprotein of newly emerged H7N9 influenza A virus harbors a unique motif conferring resistance to antiviral human MxA.

David Riegger; Rong Hai; Dominik Dornfeld; Benjamin Mänz; Victor H. Leyva-Grado; Maria Teresa Sánchez-Aparicio; Randy A. Albrecht; Peter Palese; Otto Haller; Martin Schwemmle; Adolfo García-Sastre; Georg Kochs; Mirco Schmolke

ABSTRACT Interferon-induced Mx proteins show strong antiviral activity against influenza A viruses (IAVs). We recently demonstrated that the viral nucleoprotein (NP) determines resistance of seasonal and pandemic human influenza viruses to Mx, while avian isolates retain Mx sensitivity. We identified a surface-exposed cluster of amino acids in NP of pandemic A/BM/1/1918 (H1N1), comprising isoleucine-100, proline-283, and tyrosine-313, that is essential for reduced Mx sensitivity in cell culture and in vivo. This cluster has been maintained in all descendant seasonal strains, including A/PR/8/34 (PR/8). Accordingly, two substitutions in the NP of PR/8 [PR/8(mut)] to the Mx-sensitive amino acids (P283L and Y313F) led to attenuation in Mx1-positive mice. Serial lung passages of PR/8(mut) in Mx1 mice resulted in a single exchange of tyrosine to asparagine at position 52 in NP (in close proximity to the amino acid cluster at positions 100, 283, and 313), which partially compensates loss of Mx resistance in PR/8(mut). Intriguingly, the NP of the newly emerged avian-origin H7N9 virus also contains an asparagine at position 52 and shows reduced Mx sensitivity. N52Y substitution in NP results in increased sensitivity of the H7N9 virus to human Mx, indicating that this residue is a determinant of Mx resistance in mammals. Our data strengthen the hypothesis that the human Mx protein represents a potent barrier against zoonotic transmission of avian influenza viruses. However, the H7N9 viruses overcome this restriction by harboring an NP that is less sensitive to Mx-mediated host defense. This might contribute to zoonotic transmission of H7N9 and to the severe to fatal outcome of H7N9 infections in humans. IMPORTANCE The natural host of influenza A viruses (IAVs) are aquatic birds. Occasionally, these viruses cross the species barrier, as in early 2013 when an avian H7N9 virus infected humans in China. Since then, multiple transmissions of H7N9 viruses to humans have occurred, leaving experts puzzled about molecular causes for such efficient crossing of the species barrier compared to other avian influenza viruses. Mx proteins are known restriction factors preventing influenza virus replication. Unfortunately, some viruses (e.g., human IAV) have developed some resistance, which is associated with specific amino acids in their nucleoproteins, the target of Mx function. Here, we demonstrate that the novel H7N9 bird IAV already carries a nucleoprotein that overcomes the inhibition of viral replication by human MxA. This is the first example of an avian IAV that is naturally less sensitive to Mx-mediated inhibition and might explain why H7N9 viruses transmitted efficiently to humans.


Journal of Biological Chemistry | 2010

Limited compatibility of polymerase subunit interactions in influenza A and B viruses

Kerstin Wunderlich; Mindaugas Juozapaitis; Benjamin Mänz; Daniel Mayer; Veronika Götz; Andrea Zöhner; Thorsten Wolff; Martin Schwemmle; Arnold Martin

Despite their close phylogenetic relationship, natural intertypic reassortants between influenza A (FluA) and B (FluB) viruses have not been described. Inefficient polymerase assembly of the three polymerase subunits may contribute to this incompatibility, especially because the known protein-protein interaction domains, including the PA-binding domain of PB1, are highly conserved for each virus type. Here we show that substitution of the FluA PA-binding domain (PB1-A1–25) with that of FluB (PB1-B1–25) is accompanied by reduced polymerase activity and viral growth of FluA. Consistent with these findings, surface plasmon resonance spectroscopy measurements revealed that PA of FluA exhibits impaired affinity to biotinylated PB1-B1–25 peptides. PA of FluB showed no detectable affinity to biotinylated PB1-A1–25 peptides. Consequently, FluB PB1 harboring the PA-binding domain of FluA (PB1-AB) failed to assemble with PA and PB2 into an active polymerase complex. To regain functionality, we used a single amino acid substitution (T6Y) known to confer binding to PA of both virus types, which restored polymerase complex formation but surprisingly not polymerase activity for FluB. Taken together, our results demonstrate that the conserved virus type-specific PA-binding domains differ in their affinity to PA and thus might contribute to intertypic exclusion of reassortants between FluA and FluB viruses.


Journal of Virology | 2010

A polymorphism in the hemagglutinin of the human isolate of a highly pathogenic H5N1 influenza virus determines organ tropism in mice.

Benjamin Mänz; Mikhail Matrosovich; Nicolai V. Bovin; Martin Schwemmle

ABSTRACT We characterized a human H5N1 virus isolate (KAN-1) encoding a hemagglutinin (HA) with a K-to-E substitution at amino acid position 222 that was previously described to be selected in the lung of the infected patient. In mice, the growth of the HA222E-encoding virus was mainly confined to the lung, but reversion to 222K allowed virus to spread to the brain. The HA222E variant showed an overall reduced binding affinity compared to that of HA222K for synthetic Neu5Ac2-3Gal-terminated receptor analogues, except for one analogue [Neu5Acα2-3Galβ1-4(Fucα1-3)(6-HSO3)GlcNAcβ, Su-SLex]. Our results suggest that human-derived mutations in HA of H5N1 viruses can affect viral replication efficiency and organ tropism.

Collaboration


Dive into the Benjamin Mänz's collaboration.

Top Co-Authors

Avatar

Martin Schwemmle

University Medical Center Freiburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Veronika Götz

University Medical Center Freiburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Georg Kochs

University of Freiburg

View shared research outputs
Top Co-Authors

Avatar

Otto Haller

University of Freiburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dominik Dornfeld

University Medical Center Freiburg

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge